
DOI: 10.4018/IJAMC.318642

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Spark-Based Parallel Implementation
of Arithmetic Optimization Algorithm
Maryam AlJame, Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Kuwait

 https://orcid.org/0000-0003-3903-6839

Aisha Alnoori, Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Kuwait*

 https://orcid.org/0000-0003-4276-7704

Mohammad G. Alfailakawi, Computer Engineering Department, College of Engineering and Petroleum, Kuwait
University, Kuwait

Imtiaz Ahmad, Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Kuwait

 https://orcid.org/0000-0002-0673-7324

ABSTRACT

Arithmetic optimization algorithm (AOA) is a recent population-based metaheuristic widely used
for solving optimization problems. However, the emerging large-scale optimization problems pose a
great challenge for AOA due to its prohibitive computational cost to traverse the huge solution space
effectively. This article proposes a parallel Spark-AOA using Scala on Apache Spark computing platform.
Spark-AOA leverages the intrinsic parallel nature of the population-based AOA and the native iterative
in-memory computation support of Spark through resilient distributed datasets (RDD) to accelerate
the optimization process. Spark-AOA divides the solutions population into several subpopulations that
are distributed into multiple RDD partitions and manipulated concurrently. Simulation experiments
on different benchmark functions with up to 1,000-dimension and three engineering design problems
demonstrate that Spark-AOA outperforms considerably standard AOA and Spark-based implementations
of two recent metaheuristics both in terms of run-time and solution quality.

Keywords
AOA, Apache Spark, Arithmetic Optimization Algorithm, Cluster, Metaheuristic, Optimization, Parallel
Computing, Parallelization

INTRODUCTION

The majority of real-world problems in many disciplines can be transformed into optimization
problems and solved successfully by using optimization techniques. In recent years, nature-inspired
population-based metaheuristics have been considered the state-of-the-art computational intelligence
paradigms for solving complex optimization problems efficiently and effectively (Rahman et al.,

https://orcid.org/0000-0003-3903-6839
https://orcid.org/0000-0003-4276-7704
https://orcid.org/0000-0002-0673-7324

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

2

2021). The popularity and widespread success of metaheuristics is attributed to their robustness,
adaptability, ease of implementation, and their ability to find optimal or near-optimal solutions in
reasonable time by employing gradient‐free search mechanisms on a population of solutions. A large
number of metaheuristics have been developed in the literature and are classified based on the natural
processes they mimic. The most commonly used classification for such metaheuristics are: evolution,
swarm intelligence, physics, and human based (Meraihi et al., 2021). Classical metaheuristics include
genetic algorithm (Holland, 1992), differential evolution (Storn & Price, 1997), and particle swarm
optimization (Eberhart & Kennedy, 1995). More recent metaheuristics include slime mould (Li et
al., 2020), sine cosine (Mirjalili, 2016), Harris hawk’s (Heidari et al., 2019), and grey wolf optimizer
(Mirjalili et al., 2014) among others (Hussain et al., 2019). There exist some other metaheursitics
such as flower pollination optimization algorithm (Ding et al., 2021) and electromagnetism-like
optimization algorithm (Chakraborty et al., 2022) which have been recently applied in biomedical
image processing field.

However, no metaheuristic can efficiently solve all types of optimization problems according
to the “No Free Lunch” theorem (Wolpert & Macready, 1997). Therefore, researchers have been
continuously proposing new metaheuristics to deal with the ever-increasing complexity of real-world
problems. Arithmetic Optimization Algorithm (AOA) is one of the newest metaheuristics proposed
by Abualigah et al. (2021a) to solve various optimization problems. The AOA is inspired by the
distribution behavior of four main arithmetic operators, namely, addition, subtraction, multiplication,
and division to evolve solutions to achieve global optima. The AOA possesses some distinctive features
such as simple and easy implementation, few tuning parameters, strong search ability that avoids falling
into local minima, and considerably faster convergence rate by adaptively balancing exploration and
exploitation phases. Despite being new, AOA has been very effective in solving real-world complex
optimization problems in many fields as will be discussed in Section 2.

Large-scale optimization problems with high dimensionality are prevalent nowadays in diverse
domains. The traditional serial implementation of metaheuristics does not scale well to solve such
problems due to the high computational cost when evaluating population fitness and traversing large
solution space (Abdelhafez et al., 2020). To address these challenges efficiently, there has been a
growing interest in the parallelization of metaheuristics from both academia and industry (Coelho
& Silva, 2021). These parallel metaheuristics leverage the intrinsic parallelism of population-based
metaheuristics and the significant advancements in parallel computing devices such as multi-core
CPUs/GPUs and distributed platforms such as Apache Hadoop and Spark to reduce execution time and
improve solutions quality (Crainic, 2019; Hennessy & Patterson, 2017). Apache Spark, a distributed
system framework, has recently experienced widespread usage due to its key features such as powerful
API to easily parallelize application programs, support for iterative algorithms through in-memory
computing, data distribution and processing on commodity clusters, and emerging cloud services
with run-time load balancing, network performance, and fault-tolerance (Zaharia et al., 2016).

Therefore, many traditional metaheuristics such as genetic algorithm (Lu et al., 2020), particle
swarm optimization (Al‐Sawwa & Ludwig, 2020), differential evolution (He et al., 2021), whale
optimization (AlJame et al., 2020), sine cosine (Alfailakawi et al., 2021), teaching-learning-based
optimization (Wan et al., 2021), and grey wolf optimizer (Jarray et al., 2022a) have been successfully
parallelized on Spark environments showing considerable performance gains for large scale problems.
However, AOA being a recently proposed metaheuristic has not been parallelized under such an
environment yet. Therefore, it is imperative to devise and investigate a distributed implementation
of AOA to cope with large-scale problems efficiently. This work proposes Spark-AOA, a distributed
implementation of AOA on Apache Spark to enhance its performance by reducing execution time as
well as communication overhead. The main contributions of this study can be stated as the following:

•	 Devise a distributed Spark-AOA algorithm on Apache Spark environment with shuffle
optimization to reduce communication overhead.

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

3

•	 Compare and analyze the performance of Spark-AOA to its serial version on benchmark functions
as well as engineering design problems using various performance metrics such as execution
time and solution quality.

•	 Compare and analyze Spark-AOA performance against recently parallelized metaheuristics on
Spark environment such as whale optimization algorithm (AlJame et al., 2020) and sine cosine
algorithm (Alfailakawi et al., 2021).

The remainder of this paper is organized as follows: Section 2 provides a brief description of AOA,
related work, and a short overview of Apache Spark platform. The parallelization and implementation
of AOA algorithm is described in Section 3. Section 4 discusses experimental results on benchmark
test functions. The results of the proposed AOA in solving three engineering design problems as
compared to serial version are given in Section 5. Finally, Section 6 concludes the paper and suggests
future research directions.

BACKGROUND

AOA Overview
The AOA (Abualigah et al., 2021a) is a population-based metaheuristic optimization algorithm that
utilizes basic arithmetic operators namely Division (D “÷ ”), Multiplication (M “×”), Addition (A “
+ ”), and Subtraction (S “− ”) to perform the optimization process to eventually reach optimal solution.
Like other metaheuristic algorithms, the optimization process comprises of two main search phases:
exploration and exploitation. The exploration phase generates diverse solutions to explore the search
area while the exploitation phase focuses on searching local regions to reach the target solution.

The optimization process starts with a set of randomly generated candidate solutions to represent
the initial population X as shown in Matrix (1):

X

x x x x

x x x

x x

j n n

j n

N

=

−

−

1 1 1 1 1 1

2 1 2 2

1 1

, , , ,

, , ,

,

� �

� � �

� � � � � �

� � � � � �

� �
NN j N n

N N j N n N n

x

x x x x
− −

−






























1 1

1 1

, ,

, , , ,

�

� � 

	 (1)

Where N denotes the number of randomly generated solutions in the initial population and n
indicates the position of the solution.

In each iteration of AOA, the Math Optimizer Accelerated (MOA) function is computed to
determine the search phase (i.e., Exploration or Exploitation). The MOA coefficient is calculated
using Equation (2):

MOA C Iter Min C Iter
Max Min

M Iter
_ _

_
() = + ×

−









	 (2)

Where, MOA C Iter_() represents the MOA function value during the current iteration; C Iter_
and M Iter_ denote current and maximum number of iterations, respectively; and Max and Min
are the maximum and minimum values of the accelerated function, respectively.

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

4

Exploration Phase
The exploration phase of AOA algorithm is carried out by two arithmetic operators Division (D) and
Multiplication (M) due to their ability to produce highly distributed values. The high dispersion
characteristic of D and M aids the exploration phase to randomly generate a diverse range of candidate
solutions to cover the search area. The exploration phase is constrained by the Math Optimizer
Accelerated function for the case when r MOA1� �> , where r1 is a random number. The position of
the candidate solution is updated according to Equation (3) where the choice of D or M operators is
constrained by the condition r2 0 5� � .< (r2 is a random number):

x C Iter
best x MOP UB LB LB

i j

j j j j

,
_ +() = ()÷ +()× −()× +(

1
 µ)) <

()× × −()× +()
, .

,

r

best x MOP UB LB LB
j j j j

2 0 5

µ �������������otherwise








	 (3)

Where x C Iter
i j,

_ +()1 represents the j th position of i th solution in the next iteration; best x
j()

is the j th position in the best-obtained solution so far;  is a small integer value; UB
j
 and LB

j

represent the upper and lower bound of the j th position, respectively; and µ is a parameter used to
control the exploration phase and is set to 0.5 (Abualigah et al., 2021a). The Math Optimizer Probability
(MOP) coefficient is calculated using Equation (4):

MOP C Iter
C Iter

M Iter
_ –

_

_
() = 1

1

1

α

α

	 (4)

Where MOP C Iter_() represents MOP value at current iteration; C Iter_ and M Iter_ denote
the current and maximum number of iterations, respectively; and α is a sensitivity parameter set to
5 (Abualigah et al., 2021a) and determines the efficiency of the exploitation over the iterations.

Exploitation Phase
The Subtraction (S) and Addition (A) operators are used to guide AOA’s exploitation phase due to
their low dispersion characteristic. This characteristic of S and A helps the exploitation phase to
perform a thorough search in local regions of the search area to reach optimal solution with higher
probability. The exploitation phase is controlled by the MOA function value for the case when r1
is not greater than MOA . The position of the candidate solution during the exploitation phase is
updated according to Equation (5) where the choice of S or A operators is constrained by the condition
r3 0 5� � .< :

x C Iter
best x MOP UB LB LB

i j

j j j j

,
_

,
+() = ()− × −()× +()
1

µ ��������������� � .

� � � � � � � � �

r

best x MOP UB LB LB
j j j

3 0 5<

()+ × −()× +µ jj
otherwise()






 ,���������������

	 (5)

To sum up, the AOA algorithm begins with a randomly generated set of candidate solutions that
represents the initial population. As the algorithm iterates, solutions’ positions are updated using D,
M, S, and A operators with respect to the best-obtained solution so far. The MOA function value
controls switching between exploration and exploitation phases to approach the target solution while
maintaining solution diversity. The pseudo-code of AOA algorithm is given in Algorithm 1.

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

5

Algorithm 1 Pseudo-code for AOA algorithm

Initialize Arithmetic Optimization Algorithm parameters a, m.
Initialize the solutions’ positions randomly. (Solutions: i= 1, ..., N.)
while (C_Iter < M_Iter) do
  Calculate Fitness Function (FF) for the given solutions
  Find best solution (Determined best so far).
  Update MOA and MOP values using Eq. (2) and Eq. (4), respectively.
  for (i= 1 to Solutions) do
   for (j= 1 to Positions) do
    Generate a random values between [0, 1] for (r1, r2, and r3)
    if r1 > MOA then
     Exploration phase
     if r2 > 0.5 then
      (1) Apply Division operator (D) and update
      the ith solutions’ positions using Eq.(3).
     else
      (2) Apply Multiplication operator (M) and update
      the ith solutions’ positions using Eq.(3).
     end if
    else
     Exploitation phase
     if r3 > 0.5 then
      (1) Apply Subtraction operator (S) and update
      the ith solutions’ positions using Eq.(5).
     else
      (2) Apply Addition operator (A) and update
      the ith solutions’ positions using Eq.(5).
     end if
    end if
   end for
  end for
  C_Iter= C_Iter+1
end while
Return the best solution (x).

LITERATURE REVIEW

AOA is a recent population-based metaheuristic proposed by Abualigah et al. (2021a), which has
received wider acceptance due to its key advantages such as simplicity, few control parameters, and
robust search competency. As of January 2023, AOA has been cited more than 915 times according
to Google Scholar and has been applied successfully in various fields. Applications of AOA include
thermoelectric power generation systems (Jarray et al., 2022b), damage assessment in functionally
graded material plate structures (Khatir et al., 2021), optimized neural architecture search for early
detection of Alzheimer’s disease (Deepa & Chokkalingam, 2022), tuning hyper-parameters of
bidirectional long short-term memory model for predicting the size of airborne particle bound metals
(Almalawi et al., 2022), and localization problem in wireless sensor networks (Bhat & KV, 2022)
to name a few.

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

6

Though the original AOA has shown considerable gains in performance against current
metaheuristics, it may suffer from slow convergence, getting stuck in local optima, and inadequate
exploitation. To further enhance AOA performance, researchers have proposed a variety of stochastic
operators such as opposition-based learning (Abualigah et al., 2022; Yang et al., 2022), and Gaussian
mutation mechanism and sinusoidal chaotic map (Xu et al., 2021) to address such issues. In another
enhancement, such as in (Wang et al., 2021) AOA population is divided among multiple groups,
where each group operates independently and exchanges information among randomly selected groups
after fixed number of iterations. However, it was not implemented on a parallel computing system.

In addition, AOA performance has been enhanced by hybridizing it with other metaheuristics
such as Aquila Optimizer (Abbassi et al., 2022; Zhang et al., 2022) to optimize voltaic cell parameters,
Sine Cosine Algorithm (Abdel-Mawgoud et al., 2022) to determine the size and placement of battery
energy storage devices, Electric Fish Optimization (Ibrahim et al., 2021) for feature selection problem,
Salp Swarm Algorithm (Anjum et al., 2022) to optimize sizing and placement of generation units in
radial distribution networks, Genetic Algorithm (Ewees et al., 2021) for feature selection problem,
Golden Sine Algorithm (Liu et al., 2022) for solving industrial engineering problems, Differential
Evolution (Abualigah et al., 2021b) for multilevel thresholding based image segmentation, and Slime
Mould Algorithm (Zheng et al., 2021) to efficiently solve global optimization problems. Besides,
several versions of AOA have been proposed by researchers to tackle specific optimization problems
in different fields such as the binary versions for feature selection problem in machine learning field
(Bansal et al., 2022; Dahou et al., 2022) and a discretized version to solve structural optimization in
civil engineering field (Kaveh & Hamedani, 2022). Multi-objective versions of AOA based on non-
dominance sorting have been proposed to solve real-world multi-objective optimization problems
(Bahmanyar et al., 2022; Li et al., 2022; Premkumar et al., 2021). However, none of the reported
works have considered the parallelization of AOA on distributed framework such as Apache Spark
to speed-up computation as well as to further improve its search ability for large scale problems with
higher dimensionality and complexity, which is the topic of this work.

Apache Spark
Spark is a powerful distributed computing framework built upon the core programming abstraction of
Resilient Distributed Datasets (RDDs). RDDs represent immutable and fault-tolerant collection of data
that can be distributed across multiple nodes in a cluster and can be manipulated in parallel. RDD can
be created by loading a dataset from external storage systems such as Hadoop Distributed File System
(HDFS) or Amazon S3. It can also be created by parallelizing a local collection in the program using
SparkContext’s parallelize() method. Spark supports a variety of programming languages, including
Scala, R, Python, and Java and widely being used for a broad range of applications such as machine
learning, data mining, and iterative algorithms (Zaharia et al., 2016).

Spark uses a master/slave architecture that consists of a driver node as a master and several worker
nodes as slaves as shown in Figure 1. The Spark driver is responsible for converting user program into
tasks and coordinating task scheduling on executors. The executors on worker nodes run the tasks and
return the results to Spark driver. Additionally, they allocate in-memory storage for RDDs. The cluster
manager allocates resources and launches executors (Zaharia et al., 2016). In fact, Spark can run on
different cluster managers such as Hadoop YARN, Apache Mesos, and Spark’s built-in standalone
cluster manager. RDD has two types of operations: transformations and actions. Transformations are
operations that produce a new RDD whereas actions compute results based on an RDD and either
return results to driver program or save it to an external storage system. In essence, transformations
return RDDs while actions return other data types. Transformations on RDDs are lazy evaluations
which means that the transformation is not evaluated until the action is applied on the transformation.
Lazy evaluation of transformations allows Spark to optimize the chain of operations before execution.
Spark has two types of shared variables, namely, accumulators and broadcast variables. Accumulators

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

7

combine values from worker nodes back to the driver program whereas broadcast variables enable
the program to effectively distribute large values to all worker nodes.

THE PARALLELIZATION OF AOA ALGORITHM

The Arithmetic Optimization Algorithm is a population-based optimization algorithm that starts with
randomly generated candidate solutions which diverge from near-optimal solution during exploration
phase and converge toward near-optimal solution during exploitation phase over the course of iterations.
This work proposes Spark-AOA, a Spark-based parallel implementation of AOA aiming to reduce
execution time and communication overhead. The AOA algorithm’s performance is affected by the
increased computational complexity of fitness function evaluations that should be computed for each
solution in the population. To enhance the performance, Spark-AOA splits the solutions population
into subpopulations that are distributed into multiple partitions on different nodes in the cluster and
manipulated concurrently. Furthermore, communication overhead is reduced by using broadcast
variable to distribute best-obtained solution to all nodes. Moreover, the number of broadcasts is
constrained by a user-defined parameter to further reduce communication overhead.

This section discusses the parallel design and implementation of the proposed Spark-AOA algorithm.

The Parallel Design
Distributed evolutionary algorithms (EAs) can be classified into two main categories based on
how they divide computing tasks: population-distributed and dimension-distributed models. The
population-distributed model involves distributing subpopulations among multiple processors or
nodes, while the dimension-distributed model involves dividing the problem dimensions or subspaces
among multiple processors or nodes. There are several subtypes of the population-distributed model,
including master-slave, island, cellular, hierarchical, and pool models. The dimension-distributed
model can be further divided into coevolution and multi-agent models (Gong et al., 2015).

The parallelization of AOA algorithm is based on the population-distributed model where
subpopulations are distributed across multiple computing nodes in the cluster. This allows the model
to be run more efficiently, as it can take advantage of the processing power of multiple devices

Figure 1. Apache spark architecture

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

8

simultaneously. It can also be useful for handling large populations that may be computationally
expensive to be processed by a single processor or node. To exchange information between
subpopulations, the master-slave approach is used. In the master-slave model, the master is responsible
for performing selection operations and broadcasting the best fitness, but it delegates the task of
evaluating the fitness of subpopulations to slaves, as this constitutes the majority of the computing
load. Because the evaluations of fitness in subpopulations are independent of each other, there is
no need for communication between the slaves. This model is simple because communication only
occurs between the master and the slaves, with the master sending subpopulations to the slaves and
the slaves returning the corresponding fitness values to the master.

The parallelization of Spark-AOA optimization phase is illustrated in Figure 2. The population
RDD is a data set of size N that is divided into P partitions and distributed to different worker nodes.
Figure 2 shows three worker nodes where each node has four CPU cores and contains four partitions.
Each subpopulation corresponds to a partition of the population RDD and each partition is assigned
to one CPU core. All partitions work concurrently for several iterations to find the partition’s best
solution. The fitness function for each solution in the subpopulation is calculated simultaneously
in all partitions. Then, the local best fitness in each partition is determined and all solutions in the
subpopulations update their positions with respect to the local best fitness concurrently. Next, the
best solution in each partition is obtained and the current best solution is selected as the global best
fitness after a specific number of iterations.

Spark-AOA Algorithm
The pseudo-code of the proposed Spark-AOA is described in Algorithm 2. The initialization phase
starts by initializing AOA parameters α and µ and sets the best fitness to infinity (line 1). Then,
population X is initialized with N sets of randomly generated candidate solutions, each with n
solution’s positions that are constrained by upper bound and lower bound values (line 2). Spark
parallelize() method is called from the driver program on master node to divide the population RDD
into P partitions that are distributed across different nodes which can operate on the data in parallel.
Then, Spark persist() method is called to store the subpopulations in memory of each node to reuse
them in actions if needed hence avoid recomputation and allow faster future actions. In line 3, the
fitness function is calculated for each solution in a subpopulation in each partition using mapPartitions()
transformation. This results in an RDD [<F, (x1, x2, …, xn)>] where each record is a key-value pair
with fitness value F representing the key and solution (x1, x2, …, xn) representing the value. The
mapPartitions() is a powerful transformation that significantly reduces the amount of shuffling since

Figure 2. Parallelization of spark-AOA optimization phase

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

9

it operates on one partition at a time rather than on each RDD element. After that, the global best
solution is determined by applying a map transformation on each partition on different nodes to find
the best solution while a reduce action is applied to return the global best solution among all partitions
(line 4). The glom() method is used to create an RDD that combines all elements within each partition
into a list to reduce data shuffling across partitions. Lastly, the global best solution is broadcasted to
all nodes in the cluster (line 5) and the solutions’ positions are updated using Eq. (3) or Eq. (5) subject
to the condition r MOA1� �> (line 6).

Following the initialization phase, Spark-AOA begins the optimization phase where the fittest
solution in each subpopulation is identified at each iteration. When the main loop of the optimization
phase starts, the mapPartitions() transformation calculates the fitness for each solution in the
subpopulation in each partition (line 8). Next, the inner loop iterates M_Iter/m times so that each
subpopulation will work on enhancing its own population iteratively (lines 9-20). In each iteration
of the inner loop, the local best fitness in each partition is identified, then, MOA and MOP
coefficients are calculated and random values (r1 , r2 , and r3) are generated according to the
original AOA algorithm (lines 11-13). Subsequently, the solutions’ positions are updated using Eq.
(3) or Eq. (5) subject to the condition r MOA1� �> (lines 14-18) concluding one iteration of the inner
loop. Eventually, all partitions stored in different worker nodes return the solutions as an array using
the glom() method. The best solution in each partition is selected from the array and the current best
solution among all partitions is identified (line 21). Following that, the fitness of the solution discovered
in this iteration is compared to the global best fitness currently available. If a solution’s fitness
surpasses the current global best, the solution with the lowest fitness among all partitions is broadcasted
(lines 22-25). The loop counter is then incremented (line 26) and the operation is continued until the
predetermined number of iterations has been reached (line 27).

SPARK-AOA EVALUATION

This section evaluates the performance of the Spark-AOA as compared to the serial version of the
algorithm in terms of exeution time and solution quality. Furthermore, Spark-AOA is compared with
other recently parallelized metaheuristics in Spark environment namely Whale Optimization Algorithm
(AlJame et al., 2020) with respect to execution time and Sine Cosine Algorithm (Alfailakawi et al.,
2021) with respect to execution time and solution quality.

Algorithm 2 Pseudo-code of the Spark-AOA

Input: N = population size, P = number of partitions, n = dimension size,
Fn = objective function, M_Iter = maximum number of iterations,
m = inner loop iterations, C_Iter = 1
Output: best solution (fitness)
1: initialize AOA parameters a, m. initialize best fitness Fbest
to infinity
2: [(x1, x2, …, xn)] ← initialize solutions’ positions randomly
and parallelize it across P partitions
3: [<F, (x1, x2, …, xn)>] ← calculate fitness for solutions’ positions
4: <Fbest, (x1, x2, …, xn)> ← find best fitness
5: FagentBC ← broadcast best fitness <Fbest, (x1, x2, …, xn)>
6: [(x1, x2, …, xn)] ← update solutions’ positions with respect
to Fbest
7: repeat
8:  [<F, (x1, x2, …, xn)>] ← calculate fitness for solutions’ positions
9:  repeat  • inner loop in each partition

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

10

10:   find local best fitness (Flocal) in the partition
11:   update MOA value using Eq. (2)
12:   update MOP value using Eq. (4)
13:   generate random values between [0, 1] (r1, r2, and r3)
14:   if r1 > MOA then
15:     Exploration phase use Eq.(3) to update solutions’
position in the partition
16:   else
17:    Exploitation phase use Eq. (5) to update solutions’ position in
the partition
18:   end if
19:   i = i + 1
20:  until i > M_Iter/m
21:  <FbestCurrent, (x1, x2, …, xn)> ← find current best fitness
among all partitions
22:  if FbestCurrent < FagentBC.value then
23:   FagentBC.destroy
24:   FagentBC ← broadcast best fitness <FbestCurrent, (x1, x2, …, xn)>
25:  end if
26:  C_Iter = C_Iter + 1
27: until C_Iter > m
28: return best fitness

Spark-AOA performance on nine benchmark functions is compared to its serial equivalent as
well as Spark-SCA while focusing on dimensionality impact on execution time and solution quality.
All three algorithms were tested using Amazon Elastic MapReduce (EMR), one of AWS’s tools that
offers a framework for big data processing on top of Amazon Elastic Compute Cloud (EC2). The
used nodes were EC2 of type m4.xlarge with four vCPU and 16 Mem (GiB). Spark-AOA and Spark-
SCA utilize one master node and three worker nodes while serial AOA has one master node. Equal
numbers of function evaluations were employed in all implementations to allow for a fair comparison
of Spark-AOA, serial AOA, and Spark-SCA. Population size for the serial version is set at 32, with
300 iterations. For Spark-AOA and Spark-SCA, a population size of 96 was used and a maximum
number of iterations of 100 resulting in a total of 9,600 function evaluations for each implementation.
Table 1 presents the speedup achieved by Spark-AOA as compared to the serial version as well as
Spark-SCA. The average values of best fitness, standard deviation (STD), best and worst fitness values
achieved for all algorithms across 30 separate runs for each dimension size are reported in Table 2.

Table 1 and 2 show the results for three different benchmark dimensions, in particular 50, 250,
and 1,000. The nine benchmark functions used in these experiments include three unimodal functions,
namely Sphere (F1), Schwefel 2.21 (F4), and Rosenbrock (F5), three multimodal functions, namely
Rastrigin (F9), Ackley (F10), and Griewank (F11), and three composite functions, namely CF3 (F16),
CF4 (F17), and CF5 (F18). Benchmark functions details are described in the appendix. The main
purpose of this experiment was to investigate algorithm performance with respect to speedup and
solution quality as a function of problem size. The speedup is computed as the execution time of
algorithm x divided by the execution time of Spark-AOA algorithm, where x is either serial AOA
or Spark-SCA.

As shown in Table 1, Spark-AOA performed poorly as compared to the serial version and Spark-
SCA for all benchmarks when using dimensions 50 except for F5. With dimension of 250, Spark-AOA
resulted in a speedup for all multimodal functions and one unimodal function (F5) when compared
to the serial version. On the other hand, as compared to Spark-SCA, Spark-AOA provided better

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

11

performance for all benchmarks with dimenison 250 except for F4, F9, and F17. For dimension 1000,
Spark-AOA is the best performing algorithm as compared to the remaining ones for all benchmarks.
These results suggest that Spark-AOA is not appropriate when solving small or medium-sized
problems, in particular problems charaterised by having a single minima such as unimodal functions.
However, Spark-AOA can achieve significant speedup when addressing higher-dimensional problems.

The results presented in Table 2 indicate that Spark-AOA algorithm performs well on all
benchmark functions in terms of solution quality regardless of problem dimension. A comparison
with the serial AOA shows that Spark-AOA obtained the best fitness for all benchmark functions,
except for F16 with dimension 50. Furthermore, it can be observed that the proposed algorithm
consistently outperforms the Spark-SCA algorithm in terms of solution quality, except for F5 with
dimension 1000. In summary, the results suggest that Spark-AOA exhibits superior solution quality
when compared to both the sequential version and Spark-SCA algorithm.

The second part of the experiment compared the average running time of the proposed
parallel AOA algorithm to the Spark-based Whale Optimization Algorithm (Spark-WOA). The
Spark-WOA (AlJame et al., 2020) implementation was tested on an EMR Yarn cluster comprising
ten Amazon EC2 instances, including one master node and nine worker nodes. These instances
were of the general purpose m4.large type, each with 2 vCPUs and 8 GiB of memory. The cluster
had a total of 20 cores. Alternatively, Spark-AOA was tested on the same cluster configuration
explained earlier with one master node and three worker nodes. The used nodes were EC2 of
type m4.xlarge with four vCPU and 16 Mem (GiB). Therefore, the total number of cores in the
cluster is 16 cores. The performance of Spark-AOA was compared to Spark-WOA using five
different benchmarks (F1, F4, F5, F9, and F10). To ensure a fair comparison, Spark-AOA was
executed with a population size of 512 and a maximum number of iterations of 70, resulting in a
same number of function evaluations as Spark-WOA. The benchmark dimension was set to 1,000.
Additionally, Spark-AOA was run 30 times for each benchmark, and average execution times for
these runs are reported. Table 3 shows average execution time for Spark-AOA and Spark-WOA.
It is apparent from the table that Spark-AOA is approximately 40 times faster than Spark-WOA
on average for all benchmark functions. The significant improvement in Spark-AOA’s speed
could be attributed to several factors such as reducing communication overhead by limiting the
number of broadcasts to worker nodes and the nature of the two metaheuristics. Therefore, it
can be concluded that Spark-AOA algorithm has superior computational performance compared
to the Spark-WOA algorithm.

ENGINEERING DESIGN PROBLEMS

This section compares Spark-AOA to its serial counterpart on real optimization problems such as
constrained engineering design problems namely welded beam (Ragsdell & Phillips, 1976), tension/
compression spring (Arora, 2004; Belegundu & Arora, 1985), and pressure vessel (Kannan & Kramer,
1994; Moss, 2004). The main goal of applying optimization to engineering problems is to reduce the
values of design parameters and consequently overall design cost.

The objective of the welded beam design problem is to minimize manufacturing cost by obtaining
the best value of four optimization variables, namely, thickness of weld (h), length of attached part
of beam (l), beam thickness (b), and height of the bar (t) while using shear stress (τ), bending
stress (θ), buckling load (P), and deflection (δ) as the constraints. The mathematical representation
of the welded beam design problem, shown in Figure 3, is described as follows:Consider

�
x x x x x h l t b= 


 =




1 2 3 4

��� ��� ��� ������ ��� 	

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

12

Minimize

f x x x x x x
�() = + +()1 10471 0 04811 14 0

1
2
2 3 4 2

. . . 	

Subject to

g x x
1

13 600 0
� �() = ()− ≤� , �τ 	

Table 1. Spark-AOA speedup vs serial-AOA and spark-SCA

Function Dimension
Speedup

Spark-AOA vs Serial-AOA Spark-AOA vs Spark-SCA

F1

50 0.211 0.822

250 0.968 1.098

1,000 2.885 2.325

F4

50 0.219 0.933

250 0.763 0.937

1,000 2.734 2.061

F5

50 0.345 1.008

250 1.302 1.440

1,000 3.033 2.066

F9

50 0.308 0.943

250 1.142 0.884

1,000 3.119 1.641

F10

50 0.341 2.402

250 1.238 1.413

1,000 3.379 1.554

F11

50 0.402 0.882

250 1.598 1.547

1,000 3.714 1.771

F16

50 0.198 0.903

250 0.843 1.201

1,000 2.548 1.852

F17

50 0.166 0.861

250 0.303 0.393

1,000 2.682 1.875

F18

50 0.172 0.952

250 0.784 1.291

1,000 2.619 1.642

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

13

Table 2. Normalized fitness values

F
Spark-SCA Spark-AOA Serial-AOA

Dim 50 250 1,000 50 250 1,000 50 250 1,000

F1

Average 2.13E-04 3.92E-04 9.87E-04 7.61E-210 8.34E-205 0.00E+00 9.45E-03 2.13E-01 1.00E+00

STD 2.85E-02 5.17E-02 1.23E-01 0.00E+00 0.00E+00 0.00E+00 1.76E-01 1.00E+00 3.76E-01

Best 0.00E+00 0.00E+00 0.00E+00 1.07E-230 4.33E-231 1.17E-231 9.61E-04 1.10E-01 1.00E+00

Worst 6.09E-03 1.11E-02 2.64E-02 2.62E-208 2.43E-203 0.00E+00 2.79E-02 2.39E-01 1.00E+00

F4

Average 7.10E-03 1.63E-03 1.83E-02 9.23E-105 0.00E+00 6.86E-104 9.14E-01 9.86E-01 1.00E+00

STD 4.13E-01 6.37E-02 9.43E-01 4.34E-103 0.00E+00 5.79E-102 1.00E+00 7.33E-02 1.82E-02

Best 1.25E-08 3.22E-12 2.26E-08 2.09E-115 4.06E-116 0.00E+00 5.95E-01 9.76E-01 1.00E+00

Worst 1.41E-01 1.88E-02 3.12E-01 1.47E-103 0.00E+00 2.03E-102 9.59E-01 9.91E-01 1.00E+00

F5

Average 1.65E-07 1.69E-03 0.00E+00 3.27E-09 1.67E-08 6.69E-08 2.77E-02 2.24E-01 1.00E+00

STD 2.33E-05 3.82E-01 3.15E-09 0.00E+00 4.66E-11 1.63E-10 3.31E-01 5.19E-01 1.00E+00

Best 3.53E-09 1.79E-08 0.00E+00 3.53E-09 1.79E-08 7.20E-08 9.99E-03 2.05E-01 1.00E+00

Worst 2.13E-06 4.82E-02 0.00E+00 2.77E-09 1.57E-08 6.42E-08 4.01E-02 2.35E-01 1.00E+00

F9

Average 4.97E-03 2.27E-02 2.37E-01 0.00E+00 0.00E+00 0.00E+00 1.44E-02 1.91E-01 1.00E+00

STD 1.86E-02 1.32E-01 1.00E+00 0.00E+00 0.00E+00 0.00E+00 9.26E-03 3.60E-02 1.01E-01

Best 0.00E+00 0.00E+00 4.16E-14 0.00E+00 0.00E+00 0.00E+00 7.41E-03 1.74E-01 1.00E+00

Worst 1.66E-02 1.78E-01 1.00E+00 0.00E+00 0.00E+00 0.00E+00 1.29E-02 1.23E-01 5.68E-01

F10

Average 2.19E-02 1.73E-02 1.33E-02 0.00E+00 0.00E+00 0.00E+00 7.58E-01 9.79E-01 1.00E+00

STD 4.71E-01 2.86E-01 3.71E-01 0.00E+00 0.00E+00 0.00E+00 1.00E+00 8.96E-02 6.94E-02

Best 0.00E+00 4.02E-11 9.73E-10 2.35E-17 2.35E-17 2.35E-17 4.03E-01 9.90E-01 1.00E+00

Worst 3.29E-01 2.14E-01 3.09E-01 0.00E+00 0.00E+00 0.00E+00 9.59E-01 9.97E-01 1.00E+00

F11

Average 9.80E-04 1.56E-03 4.31E-02 0.00E+00 0.00E+00 0.00E+00 7.68E-03 1.80E-01 1.00E+00

STD 2.38E-02 3.80E-02 1.00E+00 0.00E+00 0.00E+00 0.00E+00 3.18E-02 1.39E-01 5.73E-01

Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.21E-05 1.70E-01 1.00E+00

Worst 2.333E-02 3.73E-02 9.83E-01 0.00E+00 0.00E+00 0.00E+00 2.10E-02 1.98E-01 1.00E+00

F16

Average 1.00E+00 6.36E-01 6.12E-01 6.70E-01 0.00E+00 4.87E-01 2.60E-01 8.58E-02 5.37E-01

STD 1.00E+00 6.38E-01 4.42E-01 8.70E-01 0.00E+00 8.94E-01 6.70E-01 6.57E-01 8.13E-01

Best 0.00E+00 3.64E-01 1.00E+00 8.08E-02 0.00E+00 2.02E-02 0.00E+00 0.00E+00 0.00E+00

Worst 1.00E+00 5.36E-01 8.41E-01 3.78E-01 0.00E+00 3.79E-01 3.31E-01 3.49E-01 3.72E-01

F17

Average 1.53E-01 2.24E-01 2.27E-01 1.02E-02 7.43E-02 0.00E+00 1.00E+00 6.79E-01 8.55E-01

STD 1.15E-01 2.07E-01 1.68E-01 2.85E-02 1.12E-01 0.00E+00 9.38E-01 8.21E-01 1.00E+00

Best 3.84E-03 6.14E-01 2.51E-01 0.00E+00 0.00E+00 7.68E-03 1.00E+00 1.50E-01 0.00E+00

Worst 3.49E-02 2.06E-01 1.01E-01 2.33E-03 7.89E-02 0.00E+00 7.47E-01 1.00E+00 8.75E-01

F18

Average 4.79E-01 6.33E-01 5.27E-01 1.07E-01 1.55E-01 0.00E+00 6.86E-01 1.00E+00 4.78E-01

STD 8.54E-01 8.26E-01 6.71E-01 1.55E-01 2.81E-01 0.00E+00 1.00E+00 9.46E-01 5.71E-01

Best 1.36E-01 1.00E+00 9.23E-01 1.44E-02 9.06E-02 5.13E-02 0.00E+00 0.00E+00 4.01E-04

Worst 1.00E+00 6.39E-01 6.19E-01 1.78E-01 3.99E-01 0.00E+00 6.35E-01 5.90E-01 4.56E-01

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

14

g x x
2

30 000 0
� �() = ()− ≤� , �σ 	

g x x x
3 1 4

0
�() = − ≤� � 	

g x x x x x
4 1

2
4 3 2

0 10471 0 04811 14 5 0 0
�() = + +()− ≤� . . � � � � . � 	

g x x
5 1

0 125 0
�() = − ≤� . � � � 	

g x x
6

0 25 0
� �() = ()− ≤� . �δ 	

g x P x
7

6 000 0
� �() = − ()≤� , � � � 	

Where

τ τ τ τ τ
�
x

x

R
() = +() +()′ ′′ ′′� ()’ 2 2

2
2

2
	

′ =τ �
,6 000

2
1 2
x x

	

Table 3. Spark-AOA and spark-WOA execution time comparison

Benchmark
Execution time (seconds)

Spark-AOA Spark-WOA

F1 1.02 52.10

F4 1.05 51.96

F5 1.58 48.98

F9 1.17 49.35

F10 1.27 48.61

Figure 3. Welded beam design problem

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

15

′′ =τ
MR

J
	

M
x

= +










6 000 14

2
2, 	

R
x x x

= +
+









�

�
2
2

1 3

2

4 2
	

J x x
x x x

= +
+





































2 2

4 21 2
2
2

1 3

2

� �
�







	

σ
�
x

x x
() =� ,504 000

4 3
2

	

δ
�
x

x x
() =

×()
�
, ,

� �

65 856 000

30 106
4 3
3

	

P x

x x x
�() =

×()
−

×

×()






�
.

� �
4 013 30 10

36
196

1

30 10

4 12 10

28

6 3
2
4
6

3

6

6







	

The intervals for the optimization variables are as follows:

0 10 2 0. , .≤ ≤h b 	
0 10 10 0. , .≤ ≤l t 	

The second design problem is the tension/compression spring design problem that aims to
minimize the weight of the tension/compression spring to satisfy the design constraints. Three
design variables need to be considered in this problem namely, mean coil diameter (D), number of
spring’s active coil (N), and diameter of the wire (d). The tension/compression spring design problem
schematic is shown in Figure 4 and the mathematical formulation of the design problem is defined
as follows:Consider

�
x x x x d D N= 


 =




1 2 3

��� ��� ��� ��� 	

Minimize

f x x x x x x
�() = +

1
2
2 3 1

2
2

2� 	

Subject to

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

16

g x
x x

x1
2
3
3

1
4

1
71785

0
�() = − ≤� � � 	

g x
x x x

x x x x2
2
2

1 2

2 1
3

1
4

1
2

4

12566

1

5108
1 0

�() = −

−()
+ − ≤�

�

�
� � 	

g x
x

x x3
1

2
2
3

1
140 45

0
�() = − ≤�

.
� 	

g x
x x

4
1 2

1 5
1 0

�() = +
− ≤�

�

.
� 	

The intervals for the optimization variables are as follows:

0 05 2 0. .≤ ≤d 	
0 25 1 3. .≤ ≤D 	
2 0 15 0. .≤ ≤N 	

The pressure vessel design problem schematic is shown in Figure 5. The pressure vessel consists
of a cylindrical part that is capped with hemispherical heads at both ends. Four design parameters need
to be optimized to minimize the total cost, namely thickness of pressure vessel (Ts), head thickness
(Th), length of the cylindrical part excluding the heads (L), and the inner radius (R). The mathematical
representation of pressure vessel design problem is described as follows:Consider

�
x x x x x T T R L

s h
= 


 =




1 2 3 4

��� ��� ��� ��� ��� ��� 	

Minimize

f x x x x x x x x x x
�() = + + +0 6224 1 7781 3 1661 19 84

1 3 4 2 3
2

1
2
4 1

2
3

. . . . 	

Subject to

Figure 4. Tension/compression spring design problem

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

17

g x x x
1 1 3

0 0193 0
�() =− + ≤� . � 	

g x x x
2 2 3

0 00954 0
�() =− + ≤� . � 	

g x x x x
3 3

2
4 3

34

3
1296000 0

�() =− − + ≤� �π π 	

g x x
4 4

240 0
�() = − ≤� � 	

The intervals for the optimization variables are as follows:

0 0625 6 1875. , .≤ ≤T T
s h

	

�������� � ,� ���10 200≤ ≤R L 	

The proposed algorithm (Spark-AOA) and its serial version were applied for solving the welded
beam, tension/compression spring, and pressure vessel design problems and their performance in
term of execution time, speedup, and overall cost were compared. The results are given in Tables 4,
5, and 6. All tables include maximum number of iterations and population size (number of agents).
The number of function evaluations and cluster settings were the same for both algorithms, similar
to what was done in the previous section. The reported results in this section are the average of 30
independent runs. For all three engineering design problems, the proposed Spark-AOA algorithm
outperforms the serial version in terms of execution time. In addition, the proposed algorithm offers
at least a two-fold speedup over the serial version when the population size exceeds 8000. Evidently,
the speedup grows as population size increases in most cases. In terms of cost, Spark-AOA performs
relatively poorly compared to the serial version in most cases. Both implementations resulted in a
comparable cost for the tension/compression spring design problem. As for the welded beam design
problem, Spark-AOA gives a higher cost for four out of five cases with an average increase of 5% as
compared to the serial version. Furthermore, Spark-AOA resulted in a higher cost for the pressure
vessel design problem as compared to the serial version. Although the cost is typically higher, Spark-
AOA is more efficient in terms of run-time, providing at least two times the speedup over the serial
implementation.

Figure 5. Pressure vessel design problem

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

18

CONCLUSION

Nature-inspired population-based metaheuristics including the recently proposed AOA are state-of-
the-art computational intelligence paradigms for exploring efficiently the search space of complex
optimization problems. This article developed and implemented a distributed version of AOA called
Spark-AOA on Apache Spark environment in order to accelerate the optimization process. To our
knowledge, AOA has previously not been implemented on the Spark platform. Spark-AOA harnessed
the in-memory parallel computing capabilities of Spark and the intrinsic parallelism in population-
based metaheuristics to reduce computational time. Spark-AOA divided the population into several
subpopulations and each subpopulation evolved concurrently on a different node in the cluster. The

Table 4. Welded beam design problem results

Algorithm
of evaluations Optimization variables

Cost Time
(sec) Speedup

Max. iter. Agents h l t b

AOA 250 500 0.204 4.344 9.491 0.238 2.133 0.606
1.603

Spark-AOA 200 625 0.177 5.865 9.217 0.235 2.241 0.378

AOA 500 2,000 0.179 5.546 9.674 0.218 2.127 3.907
3.108

Spark-AOA 125 8,000 0.189 5.684 9.024 0.243 2.272 1.257

AOA 600 4,000 0.184 5.332 9.752 0.209 2.080 8.748
3.22

Spark-AOA 100 24,000 0.198 4.983 8.963 0.242 2.167 2.717

AOA 300 10,000 0.186 4.859 9.743 0.216 2.058 10.745
2.976

Spark-AOA 50 60,000 0.197 4.591 8.927 0.234 2.044 3.611

AOA 120 75,000 0.179 4.590 9.564 0.212 1.964 29.357
3.023

Spark-AOA 100 90,000 0.203 4.426 8.978 0.235 2.049 9.712

Table 5. Tension/compression spring design problem results

Algorithm
of evaluations Optimization variables

Cost Time
(sec) Speedup

Max. iter. Agents d D N

AOA 250 500 0.061 0.673 9.526 0.019 0.434
1.219

Spark-AOA 200 625 0.055 0.462 12.627 0.018 0.356

AOA 500 2,000 0.056 0.518 11.726 0.017 2.796
2.461

Spark-AOA 125 8,000 0.053 0.387 13.259 0.016 1.136

AOA 600 4,000 0.055 0.456 12.173 0.015 6.463
2.608

Spark-AOA 100 24,000 0.055 0.447 10.522 0.015 2.478

AOA 300 10,000 0.052 0.374 13.233 0.014 8.085
2.586

Spark-AOA 50 60,000 0.055 0.428 10.368 0.015 3.126

AOA 120 75,000 0.054 0.399 11.353 0.014 24.628
2.927

Spark-AOA 100 90,000 0.054 0.413 10.53 0.014 8.414

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

19

communication between subpopulations was carried out by using a broadcast variable to distribute
best-obtained solution to all nodes at specific iteration intervals. To evaluate the performance of
Spark-AOA, various simulation experiments were conducted on different benchmarks and engineering
design problems on Amazon Web Services (AWS) public cloud. The important conclusions of this
article can be summarized as follows:

•	 Spark-AOA improved the speedup and solution quality to solve large scale optimization problems
due to the exploitation of population level parallelism as compared with standard AOA.

•	 Experimental results revealed that the high-dimensional optimization problems requiring a large
number of time-consuming fitness evaluations per iteration benefit most from parallelization. On
the contrary, low-dimensional problems requiring a small number of short fitness evaluations
per iteration showed limited scalability.

•	 Spark-AOA demonstrated higher speedup and better solution quality as compared with Spark-
based implementations of recent metaheuristics such as Whale Optimization Algorithm and
Sine Cosine Algorithm.

A possible limitation of the proposed approach is that it did not exploit the parallelism at the
dimension level of the optimization problem to further enhance the speedup. In addition, computation
to communication cost trade-off among subpopulations needs further investigation. Based on these
observations of the study, the authors plan to pursue the following research directions in order to
improve the versatility and robustness of our approach.

•	 Study the effects of more complex inter-subpopulations communication and exploitation of
parallelism at the dimension level for each individual of subpopulation to harness benefits of
Spark-AOA on compute-intensive real-life optimization problems.

•	 Investigate the parallelization of hybrid versions of AOA including multi-objective AOA in
Spark environment.

•	 Explore opportunities of parallelizing AOA with GPU to enhance its competitive effectiveness
and efficiency with respect to the solution quality and the execution time.

Table 6. Pressure vessel design problem results

Algorithm
of evaluations Optimization variables

Cost Time
(sec) Speedup

Max. iter. Agents T
s

T
h

R L

AOA 250 500 1.100 0.688 49.362 137.591 8419.168 0.447
1.211

Spark-AOA 200 625 1.128 0.844 47.001 164.798 10146.855 0.369

AOA 500 2,000 1.015 0.620 46.949 150.831 7727.2456 2.934
2.359

Spark-AOA 125 8,000 1.048 0.622 48.254 145.303 8558.302 1.244

AOA 600 4,000 0.938 0.594 46.954 148.626 7141.491 6.798
2.552

Spark-AOA 100 24,000 1.041 0.663 48.166 140.632 8507.578 2.664

AOA 300 10,000 0.911 0.574 44.284 166.026 7079.079 8.648
2.501

Spark-AOA 50 60,000 1.001 0.619 47.985 137.092 7864.746 3.458

AOA 120 75,000 0.883 0.541 43.311 173.038 6892.649 26.115
2.734

Spark-AOA 100 90,000 0.989 0.594 47.414 140.684 7630.083 9.552

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

20

ACKNOWLEDGMENT

Competing Interests
The authors declare that they have no conflict of interest.

Funding Agency
There is no funding associated with this research.

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

21

REFERENCES

Abbassi, A., Mehrez, R. B., Touaiti, B., Abualigah, L., & Touti, E. (2022). Parameterization of photovoltaic
solar cell double-diode model based on improved arithmetic optimization algorithm. Optik (Stuttgart), 253,
168600. doi:10.1016/j.ijleo.2022.168600

Abdel-Mawgoud, H., Fathy, A., & Kamel, S. (2022). An effective hybrid approach based on arithmetic
optimization algorithm and sine cosine algorithm for integrating battery energy storage system into distribution
networks. Journal of Energy Storage, 49, 104154. doi:10.1016/j.est.2022.104154

Abdelhafez, A., Luque, G., & Alba, E. (2020). Parallel execution combinatorics with metaheuristics: Comparative
study. Swarm and Evolutionary Computation, 55, 100692. doi:10.1016/j.swevo.2020.100692

Abualigah, L., Almotairi, K. H., Al-qaness, M. A., Ewees, A. A., Yousri, D., Abd Elaziz, M., & Nadimi-Shahraki,
M. H. (2022). Efficient text document clustering approach using multi-search Arithmetic Optimization Algorithm.
Knowledge-Based Systems, 248, 108833. doi:10.1016/j.knosys.2022.108833

Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021a). The arithmetic optimization
algorithm. Computer Methods in Applied Mechanics and Engineering, 376, 113609. doi:10.1016/j.
cma.2020.113609

Abualigah, L., Diabat, A., Sumari, P., & Gandomi, A. H. (2021b). A novel evolutionary arithmetic optimization
algorithm for multilevel thresholding segmentation of covid-19 ct images. Processes (Basel, Switzerland), 9(7),
1155. doi:10.3390/pr9071155

Al‐Sawwa, J., & Ludwig, S. A. (2020). Parallel particle swarm optimization classification algorithm variant
implemented with Apache Spark. Concurrency and Computation, 32(2), e5451. doi:10.1002/cpe.5451

Alfailakawi, M. G., Aljame, M., & Ahmad, I. (2021). Parallel and distributed implementation of sine cosine
algorithm on apache spark platform. IEEE Access: Practical Innovations, Open Solutions, 9, 77188–77202.
doi:10.1109/ACCESS.2021.3082026

AlJame, M., Ahmad, I., & Alfailakawi, M. (2020). Apache spark implementation of whale optimization algorithm.
Cluster Computing, 23(3), 2021–2034. doi:10.1007/s10586-020-03162-7

Almalawi, A., Khan, A. I., Alsolami, F., Alkhathlan, A., Fahad, A., Irshad, K., Alfakeeh, A. S., & Qaiyum,
S. (2022). Arithmetic optimization algorithm with deep learning enabled airborne particle-bound metals size
prediction model. Chemosphere, 303, 134960. doi:10.1016/j.chemosphere.2022.134960 PMID:35580643

Anjum, Z. M., Said, D. M., Hassan, M. Y., Leghari, Z. H., & Sahar, G. (2022). Parallel operated hybrid Arithmetic-
Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks.
PLoS One, 17(4), e0264958. doi:10.1371/journal.pone.0264958 PMID:35417475

Arora, J. (2004). Introduction to optimum design. Elsevier. doi:10.1016/B978-012064155-0/50012-4

Bahmanyar, D., Razmjooy, N., & Mirjalili, S. (2022). Multi-objective scheduling of IoT-enabled smart homes for
energy management based on Arithmetic Optimization Algorithm: A Node-RED and NodeMCU module-based
technique. Knowledge-Based Systems, 247, 108762. doi:10.1016/j.knosys.2022.108762

Bansal, P., Gehlot, K., Singhal, A., & Gupta, A. (2022). Automatic detection of osteosarcoma based on integrated
features and feature selection using binary arithmetic optimization algorithm. Multimedia Tools and Applications,
81(6), 8807–8834. doi:10.1007/s11042-022-11949-6 PMID:35153620

Belegundu, A. D., & Arora, J. S. (1985). A study of mathematical programming methods for structural
optimization. Part I: Theory. International Journal for Numerical Methods in Engineering, 21(9), 1583–1599.
doi:10.1002/nme.1620210904

Bhat, S. J., & K v, S. (2022). A localization and deployment model for wireless sensor networks using arithmetic
optimization algorithm. Peer-to-Peer Networking and Applications, 15(3), 1473–1485. doi:10.1007/s12083-
022-01302-x

Chakraborty, S., & Mali, K. (2022). SUFEMO: A superpixel based fuzzy image segmentation method for
COVID-19 radiological image elucidation. Applied Soft Computing, 129, 109625. doi:10.1016/j.asoc.2022.109625
PMID:36124000

http://dx.doi.org/10.1016/j.ijleo.2022.168600
http://dx.doi.org/10.1016/j.est.2022.104154
http://dx.doi.org/10.1016/j.swevo.2020.100692
http://dx.doi.org/10.1016/j.knosys.2022.108833
http://dx.doi.org/10.1016/j.cma.2020.113609
http://dx.doi.org/10.1016/j.cma.2020.113609
http://dx.doi.org/10.3390/pr9071155
http://dx.doi.org/10.1002/cpe.5451
http://dx.doi.org/10.1109/ACCESS.2021.3082026
http://dx.doi.org/10.1007/s10586-020-03162-7
http://dx.doi.org/10.1016/j.chemosphere.2022.134960
http://www.ncbi.nlm.nih.gov/pubmed/35580643
http://dx.doi.org/10.1371/journal.pone.0264958
http://www.ncbi.nlm.nih.gov/pubmed/35417475
http://dx.doi.org/10.1016/B978-012064155-0/50012-4
http://dx.doi.org/10.1016/j.knosys.2022.108762
http://dx.doi.org/10.1007/s11042-022-11949-6
http://www.ncbi.nlm.nih.gov/pubmed/35153620
http://dx.doi.org/10.1002/nme.1620210904
http://dx.doi.org/10.1007/s12083-022-01302-x
http://dx.doi.org/10.1007/s12083-022-01302-x
http://dx.doi.org/10.1016/j.asoc.2022.109625
http://www.ncbi.nlm.nih.gov/pubmed/36124000

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

22

Coelho, P., & Silva, C. (2021). Parallel Metaheuristics for shop scheduling: Enabling industry 4.0. Procedia
Computer Science, 180, 778–786. doi:10.1016/j.procs.2021.01.328

Crainic, T. (2019). Parallel metaheuristics and cooperative search. Michel Gendreau, Jean-Yves Potvin. In
Handbook of metaheuristics (pp. 419–451). Springer. doi:10.1007/978-3-319-91086-4_13

Dahou, A., Al-qaness, M. A., Abd Elaziz, M., & Helmi, A. (2022). Human activity recognition in IOHT
applications using arithmetic optimization algorithm and deep learning. Measurement, 199, 111445. doi:10.1016/j.
measurement.2022.111445

Deepa, N., & Chokkalingam, S. P. (2022). Optimization of VGG16 utilizing the Arithmetic Optimization
Algorithm for early detection of Alzheimer’s disease. Biomedical Signal Processing and Control, 74, 103455.
doi:10.1016/j.bspc.2021.103455

Ding, W., Chakraborty, S., Mali, K., Chatterjee, S., Nayak, J., Das, A. K., & Banerjee, S. (2021). An unsupervised
fuzzy clustering approach for early screening of COVID-19 from radiological images. IEEE Transactions on
Fuzzy Systems, 30(8), 2902–2914. doi:10.1109/TFUZZ.2021.3097806 PMID:36345371

Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS’95.
Proceedings of the sixth international symposium on micro machine and human science (pp. 39-43). IEEE.
doi:10.1109/MHS.1995.494215

Ewees, A. A., Al-qaness, M. A., Abualigah, L., Oliva, D., Algamal, Z. Y., Anter, A. M., Ibrahim, R. A., Ghoniem,
R. M., & Abd Elaziz, M. (2021). Boosting arithmetic optimization algorithm with genetic algorithm operators
for feature selection: Case study on cox proportional hazards model. Mathematics, 9(18), 2321. doi:10.3390/
math9182321

Gong, Y. J., Chen, W. N., Zhan, Z. H., Zhang, J., Li, Y., Zhang, Q., & Li, J. J. (2015). Distributed evolutionary
algorithms and their models: A survey of the state-of-the-art. Applied Soft Computing, 34, 286–300. doi:10.1016/j.
asoc.2015.04.061

He, Z., Peng, H., Chen, J., Deng, C., & Wu, Z. (2021). A Spark-based differential evolution with grouping topology
model for large-scale global optimization. Cluster Computing, 24(1), 515–535. doi:10.1007/s10586-020-03124-z

Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization:
Algorithm and applications. Future Generation Computer Systems, 97, 849–872. doi:10.1016/j.future.2019.02.028

Hennessy, J. L., & Patterson, D. A. (2017). Computer architecture: A quantitative approach. Elsevier/Morgan
Kaufmann.

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66–73. doi:10.1038/
scientificamerican0792-66

Hussain, K., Mohd Salleh, M. N., Cheng, S., & Shi, Y. (2019). Metaheuristic research: A comprehensive survey.
Artificial Intelligence Review, 52(4), 2191–2233. doi:10.1007/s10462-017-9605-z

Ibrahim, R. A., Abualigah, L., Ewees, A. A., Al-Qaness, M. A., Yousri, D., Alshathri, S., & Abd Elaziz, M. (2021).
An electric fish-based arithmetic optimization algorithm for feature selection. Entropy (Basel, Switzerland),
23(9), 1189. doi:10.3390/e23091189 PMID:34573818

Jarray, R., Al-Dhaifallah, M., Rezk, H., & Bouallègue, S. (2022a). Parallel cooperative coevolutionary grey wolf
optimizer for path planning problem of unmanned aerial vehicles. Sensors (Basel), 22(5), 1826. doi:10.3390/
s22051826 PMID:35270978

Jarray, R., Yang, B., & Chen, N. (2022b). Arithmetic optimization algorithm based MPPT technique for
centralized TEG systems under different temperature gradients. Energy Reports, 8, 2424–2433. doi:10.1016/j.
egyr.2022.01.185

Kannan, B. K., & Kramer, S. N. (1994). An augmented Lagrange multiplier based method for mixed integer
discrete continuous optimization and its applications to mechanical design. Transactions of ASME. Journal of
Mechanical Design, 116(2), 405–411. doi:10.1115/1.2919393

Kaveh, A., & Hamedani, K. B. (2022, January). Improved arithmetic optimization algorithm and its application
to discrete structural optimization. Structures, 35, 748–764. doi:10.1016/j.istruc.2021.11.012

http://dx.doi.org/10.1016/j.procs.2021.01.328
http://dx.doi.org/10.1007/978-3-319-91086-4_13
http://dx.doi.org/10.1016/j.measurement.2022.111445
http://dx.doi.org/10.1016/j.measurement.2022.111445
http://dx.doi.org/10.1016/j.bspc.2021.103455
http://dx.doi.org/10.1109/TFUZZ.2021.3097806
http://www.ncbi.nlm.nih.gov/pubmed/36345371
http://dx.doi.org/10.1109/MHS.1995.494215
http://dx.doi.org/10.3390/math9182321
http://dx.doi.org/10.3390/math9182321
http://dx.doi.org/10.1016/j.asoc.2015.04.061
http://dx.doi.org/10.1016/j.asoc.2015.04.061
http://dx.doi.org/10.1007/s10586-020-03124-z
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/10.1007/s10462-017-9605-z
http://dx.doi.org/10.3390/e23091189
http://www.ncbi.nlm.nih.gov/pubmed/34573818
http://dx.doi.org/10.3390/s22051826
http://dx.doi.org/10.3390/s22051826
http://www.ncbi.nlm.nih.gov/pubmed/35270978
http://dx.doi.org/10.1016/j.egyr.2022.01.185
http://dx.doi.org/10.1016/j.egyr.2022.01.185
http://dx.doi.org/10.1115/1.2919393
http://dx.doi.org/10.1016/j.istruc.2021.11.012

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

23

Khatir, S., Tiachacht, S., Le Thanh, C., Ghandourah, E., Mirjalili, S., & Wahab, M. A. (2021). An improved
Artificial Neural Network using Arithmetic Optimization Algorithm for damage assessment in FGM composite
plates. Composite Structures, 273, 114287. doi:10.1016/j.compstruct.2021.114287

Li, L. L., Ren, X. Y., Tseng, M. L., Wu, D. S., & Lim, M. K. (2022). Performance evaluation of solar hybrid
combined cooling, heating and power systems: A multi-objective arithmetic optimization algorithm. Energy
Conversion and Management, 258, 115541. doi:10.1016/j.enconman.2022.115541

Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for
stochastic optimization. Future Generation Computer Systems, 111, 300–323. doi:10.1016/j.future.2020.03.055

Liu, Q., Li, N., Jia, H., Qi, Q., Abualigah, L., & Liu, Y. (2022). A hybrid arithmetic optimization and Golden
sine algorithm for solving industrial engineering design problems. Mathematics, 10(9), 1567. doi:10.3390/
math10091567

Lu, H. C., Hwang, F. J., & Huang, Y. H. (2020). Parallel and distributed architecture of genetic algorithm on
Apache Hadoop and Spark. Applied Soft Computing, 95, 106497. doi:10.1016/j.asoc.2020.106497

Meraihi, Y., Gabis, A. B., Mirjalili, S., & Ramdane-Cherif, A. (2021). Grasshopper optimization algorithm:
Theory, variants, and applications. IEEE Access: Practical Innovations, Open Solutions, 9, 50001–50024.
doi:10.1109/ACCESS.2021.3067597

Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems,
96, 120–133. doi:10.1016/j.knosys.2015.12.022

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69,
46–61. doi:10.1016/j.advengsoft.2013.12.007

Moss, D. R. (2004). Pressure vessel design manual. Elsevier.

Premkumar, M., Jangir, P., Kumar, B. S., Sowmya, R., Alhelou, H. H., Abualigah, L., Yildiz, A. R., & Mirjalili,
S. (2021). A new arithmetic optimization algorithm for solving real-world multiobjective CEC-2021 constrained
optimization problems: Diversity analysis and validations. IEEE Access: Practical Innovations, Open Solutions,
9, 84263–84295. doi:10.1109/ACCESS.2021.3085529

Ragsdell, K. M., & Phillips, D. T. (1976). Optimal design of a class of welded structures using geometric
programming. ASME Journal of Engineering and Industry, 98(3), 1021–1025. doi:10.1115/1.3438995

Rahman, M. A., Sokkalingam, R., Othman, M., Biswas, K., Abdullah, L., & Abdul Kadir, E. (2021). Nature-
inspired metaheuristic techniques for combinatorial optimization problems: Overview and recent advances.
Mathematics, 9(20), 2633. doi:10.3390/math9202633

Storn, R., & Price, K. (1997). Differential evolution–a simple and efficient heuristic for global optimization over
continuous spaces. Journal of Global Optimization, 11(4), 341–359. doi:10.1023/A:1008202821328

Wan, L., Gong, K., Zhang, G., Li, C., Wang, Z., & Deng, X. (2021). Ensemble pruning of RF via multi-objective
TLBO algorithm and its parallelization on Spark. IEEE Access: Practical Innovations, Open Solutions, 9,
158297–158312. doi:10.1109/ACCESS.2021.3130905

Wang, R. B., Wang, W. F., Xu, L., Pan, J. S., & Chu, S. C. (2021). An adaptive parallel arithmetic optimization
algorithm for robot path planning. Journal of Advanced Transportation, 2021, 2021. doi:10.1155/2021/3606895

Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1), 67–82. doi:10.1109/4235.585893

Xu, Y. P., Tan, J. W., Zhu, D. J., Ouyang, P., & Taheri, B. (2021). Model identification of the proton exchange
membrane fuel cells by extreme learning machine and a developed version of arithmetic optimization algorithm.
Energy Reports, 7, 2332–2342. doi:10.1016/j.egyr.2021.04.042

Yang, Y., Qian, C., Li, H., Gao, Y., Wu, J., Liu, C. J., & Zhao, S. (2022). An efficient DBSCAN optimized by
arithmetic optimization algorithm with opposition-based learning. The Journal of Supercomputing, 78(18),
1–39. doi:10.1007/s11227-022-04634-w PMID:36247798

http://dx.doi.org/10.1016/j.compstruct.2021.114287
http://dx.doi.org/10.1016/j.enconman.2022.115541
http://dx.doi.org/10.1016/j.future.2020.03.055
http://dx.doi.org/10.3390/math10091567
http://dx.doi.org/10.3390/math10091567
http://dx.doi.org/10.1016/j.asoc.2020.106497
http://dx.doi.org/10.1109/ACCESS.2021.3067597
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1109/ACCESS.2021.3085529
http://dx.doi.org/10.1115/1.3438995
http://dx.doi.org/10.3390/math9202633
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/ACCESS.2021.3130905
http://dx.doi.org/10.1155/2021/3606895
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1016/j.egyr.2021.04.042
http://dx.doi.org/10.1007/s11227-022-04634-w
http://www.ncbi.nlm.nih.gov/pubmed/36247798

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

24

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J., Venkataraman, S.,
Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S. J., & Stoica, I. (2016). Apache spark: A unified engine for
big data processing. Communications of the ACM, 59(11), 56–65. doi:10.1145/2934664

Zhang, Y. J., Yan, Y. X., Zhao, J., & Gao, Z. M. (2022). AOAAO: The hybrid algorithm of arithmetic optimization
algorithm with aquila optimizer. IEEE Access: Practical Innovations, Open Solutions, 10, 10907–10933.
doi:10.1109/ACCESS.2022.3144431

Zheng, R., Jia, H., Abualigah, L., Liu, Q., & Wang, S. (2021). Deep ensemble of slime mold algorithm and
arithmetic optimization algorithm for global optimization. Processes (Basel, Switzerland), 9(10), 1774.
doi:10.3390/pr9101774

http://dx.doi.org/10.1145/2934664
http://dx.doi.org/10.1109/ACCESS.2022.3144431
http://dx.doi.org/10.3390/pr9101774

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

25

APPENDIX

Table 7 mathematically describes all the benchmark functions used in this paper while Figure 6
illustrates the graphical plot of those functions.

Table 7. Benchmark function details

Name Category Function Range fmin

Sphere Unimodal F x x
i

D

i1 1

2() =
=∑� [-100, 100] 0

Schwefel
2.21 Unimodal F x max x i D

i i4
1() = ≤ ≤{ }, [-100, 100] 0

Rosenbrock Unimodal F x x x x
i

D

i i i5 1

1

1
2
2 2

100 1() = −() + −()









=

−

+∑� � � � [-30, 30] 0

Rastrigin Multimodal F x D x x
i

D

i i9 1

210 10 2() = + − ()



=∑� cos π [-5.12, 5.12] 0

Ackley Multimodal F x
D

x exp
Di

D

i i

D

10 1

2

1
20 0 2

1 1() =− −











−

= =∑� . � � (
� �

exp ∑∑ () + +cos) � �2 20πx e
i [-32, 32] 0

Griewank Multimodal F x x
x

ii

D

i i

D
i

11 1

2

1
1

1

4000
() = + −










= =∑ ∏� � � cos [-600, 600] 0

CF3 Composite

F CF
16

3()
f f f f Griewank sFunction
1 2 3 10
, , , ,… = ′

σ σ σ σ
1 2 3 10

1 1 1 1, , , , , , , ,…



 = …





λ λ λ λ
1 2 3 10

1 1 1 1, , , , , , , ,…



 = …





[-5, 5] 0

CF4 Composite

F CF
17

4()
f f Ackley sFunction f f Rastrigin sFunction
1 2 3 4
, , , '= =′ ,

f f Weierstrass sFunction f f Griewank sFunction
5 6 7 8
, , ,= =′ ′ ,,

f f Sphere sFunction
9 10
, '=
σ σ σ σ
1 2 3 10

1 1 1 1, , , , , , , ,…



 = …





λ λ λ λ
1 2 3 10

5

32

5

32
1 1
5

0 5

5

0 5

5

100

5

100
, , , , , , , ,

.
,
.
, , ,…



 =

55

100

5

100
,













[-5, 5] 0

CF5 Composite

F CF
18

5()
f f Rastrigin sFunction f f Weierstrass sFunctio
1 2 3 4
, , ,= =′ ′ nn,

f f Griewank sFunction f f Ackley sFunction
5 6 7 8
, , , ,= =′ ′

f f Sphere sFunction
9 10
, '=
σ σ σ σ
1 2 3 10

1 1 1 1, , , , , , , ,…



 = …





λ λ λ λ
1 2 3 10

1

5

1

5

5

0 5

5

0 5

5

100

5

100

5

32

5

32
, , , , , ,

.
,
.
, , , ,…



 = ,, ,

5

100

5

100













[-5, 5] 0

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

26

Figure 6. Benchmark functions plots

International Journal of Applied Metaheuristic Computing
Volume 14 • Issue 1

27

Maryam AlJame earned her B.Sc. and M.Sc. degrees from the Computer Engineering at Kuwait University in
2012 and 2018 respectively. Currently, she is a Teaching Assistant in the Computer Engineering Department at
the College of Engineering and Petroleum, Kuwait university. Her research interests include bioinformatics, and
parallel and distributed computing.

Aisha Alnoori received her B.Sc. and M.Sc. degrees in Computer Engineering from Kuwait University in 2000 and
2004, respectively. She worked as a computer engineer at State Audit Bureau of Kuwait from 2001-2005. From
2005-2010, she was a teaching assistant at the Information Science Department at Kuwait University. Currently,
she is a teaching assistant at the Computer Engineering Department at Kuwait University. Her research interests
include embedded systems, artificial intelligence, and network security.

Mohammad G. Alfailakawi obtained his Bachelor of Science (BS) degree in both Electrical Engineering and
Computer Engineering from the University of Missouri-Columbia in 1996, and his MS and PhD degrees in Electrical
Engineering from the University of Wisconsin-Madison in 1999 and 2002 respectively. He is currently an associate
professor at the Computer Engineering Department at Kuwait University where he teaches courses in embedded
systems, computer architecture and organization, logic design, Testing, and fault-tolerant computing. Currently,
he is the chairman of the computer engineering department at the college of engineering and petroleum, Kuwait
University. During 2012 till 2015, he served as the vice dean for academic affairs at the college of Computing
Sciences and Engineering. He was also the director of Engineering Training and Alumni center at the College of
Engineering and Petroleum at Kuwait University from 2009-2012. His current research interests include design-
for-testability, Non-volatile memory test and diagnosis, Defect-based testing, reversible and quantum circuit
optimization, metaheuristics, and optimization.

Imtiaz Ahmad received the B.Sc. degree in Electrical Engineering from the University of Engineering and Technology
at Lahore, Pakistan, the M.Sc. degree in Electrical Engineering from the King Fahd University of Petroleum and
Minerals, Dhahran, Saudi Arabia, and the Ph.D. degree in Computer Engineering from Syracuse University,
Syracuse, NY, USA, in 1984, 1988, and 1992, respectively. Since 1992, he has been with the Department of
Computer Engineering, Kuwait University, Kuwait, where he is currently a Professor. His research interests include
the design automation of digital systems, parallel and distributed computing, machine learning, and software-
defined networks.

