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ABSTRACT

Arithmetic optimization algorithm (AOA) is a recent population-based metaheuristic widely used 
for solving optimization problems. However, the emerging large-scale optimization problems pose a 
great challenge for AOA due to its prohibitive computational cost to traverse the huge solution space 
effectively. This article proposes a parallel Spark-AOA using Scala on Apache Spark computing platform. 
Spark-AOA leverages the intrinsic parallel nature of the population-based AOA and the native iterative 
in-memory computation support of Spark through resilient distributed datasets (RDD) to accelerate 
the optimization process. Spark-AOA divides the solutions population into several subpopulations that 
are distributed into multiple RDD partitions and manipulated concurrently. Simulation experiments 
on different benchmark functions with up to 1,000-dimension and three engineering design problems 
demonstrate that Spark-AOA outperforms considerably standard AOA and Spark-based implementations 
of two recent metaheuristics both in terms of run-time and solution quality.

Keywords
AOA, Apache Spark, Arithmetic Optimization Algorithm, Cluster, Metaheuristic, Optimization, Parallel 
Computing, Parallelization

INTRODUCTION

The majority of real-world problems in many disciplines can be transformed into optimization 
problems and solved successfully by using optimization techniques. In recent years, nature-inspired 
population-based metaheuristics have been considered the state-of-the-art computational intelligence 
paradigms for solving complex optimization problems efficiently and effectively (Rahman et al., 
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2021). The popularity and widespread success of metaheuristics is attributed to their robustness, 
adaptability, ease of implementation, and their ability to find optimal or near-optimal solutions in 
reasonable time by employing gradient‐free search mechanisms on a population of solutions. A large 
number of metaheuristics have been developed in the literature and are classified based on the natural 
processes they mimic. The most commonly used classification for such metaheuristics are: evolution, 
swarm intelligence, physics, and human based (Meraihi et al., 2021). Classical metaheuristics include 
genetic algorithm (Holland, 1992), differential evolution (Storn & Price, 1997), and particle swarm 
optimization (Eberhart & Kennedy, 1995). More recent metaheuristics include slime mould (Li et 
al., 2020), sine cosine (Mirjalili, 2016), Harris hawk’s (Heidari et al., 2019), and grey wolf optimizer 
(Mirjalili et al., 2014) among others (Hussain et al., 2019). There exist some other metaheursitics 
such as flower pollination optimization algorithm (Ding et al., 2021) and electromagnetism-like 
optimization algorithm (Chakraborty et al., 2022) which have been recently applied in biomedical 
image processing field.

However, no metaheuristic can efficiently solve all types of optimization problems according 
to the “No Free Lunch” theorem (Wolpert & Macready, 1997). Therefore, researchers have been 
continuously proposing new metaheuristics to deal with the ever-increasing complexity of real-world 
problems. Arithmetic Optimization Algorithm (AOA) is one of the newest metaheuristics proposed 
by Abualigah et al. (2021a) to solve various optimization problems. The AOA is inspired by the 
distribution behavior of four main arithmetic operators, namely, addition, subtraction, multiplication, 
and division to evolve solutions to achieve global optima. The AOA possesses some distinctive features 
such as simple and easy implementation, few tuning parameters, strong search ability that avoids falling 
into local minima, and considerably faster convergence rate by adaptively balancing exploration and 
exploitation phases. Despite being new, AOA has been very effective in solving real-world complex 
optimization problems in many fields as will be discussed in Section 2.

Large-scale optimization problems with high dimensionality are prevalent nowadays in diverse 
domains. The traditional serial implementation of metaheuristics does not scale well to solve such 
problems due to the high computational cost when evaluating population fitness and traversing large 
solution space (Abdelhafez et al., 2020). To address these challenges efficiently, there has been a 
growing interest in the parallelization of metaheuristics from both academia and industry (Coelho 
& Silva, 2021). These parallel metaheuristics leverage the intrinsic parallelism of population-based 
metaheuristics and the significant advancements in parallel computing devices such as multi-core 
CPUs/GPUs and distributed platforms such as Apache Hadoop and Spark to reduce execution time and 
improve solutions quality (Crainic, 2019; Hennessy & Patterson, 2017). Apache Spark, a distributed 
system framework, has recently experienced widespread usage due to its key features such as powerful 
API to easily parallelize application programs, support for iterative algorithms through in-memory 
computing, data distribution and processing on commodity clusters, and emerging cloud services 
with run-time load balancing, network performance, and fault-tolerance (Zaharia et al., 2016).

Therefore, many traditional metaheuristics such as genetic algorithm (Lu et al., 2020), particle 
swarm optimization (Al‐Sawwa & Ludwig, 2020), differential evolution (He et al., 2021), whale 
optimization (AlJame et al., 2020), sine cosine (Alfailakawi et al., 2021), teaching-learning-based 
optimization (Wan et al., 2021), and grey wolf optimizer (Jarray et al., 2022a) have been successfully 
parallelized on Spark environments showing considerable performance gains for large scale problems. 
However, AOA being a recently proposed metaheuristic has not been parallelized under such an 
environment yet. Therefore, it is imperative to devise and investigate a distributed implementation 
of AOA to cope with large-scale problems efficiently. This work proposes Spark-AOA, a distributed 
implementation of AOA on Apache Spark to enhance its performance by reducing execution time as 
well as communication overhead. The main contributions of this study can be stated as the following:

•	 Devise a distributed Spark-AOA algorithm on Apache Spark environment with shuffle 
optimization to reduce communication overhead.
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•	 Compare and analyze the performance of Spark-AOA to its serial version on benchmark functions 
as well as engineering design problems using various performance metrics such as execution 
time and solution quality.

•	 Compare and analyze Spark-AOA performance against recently parallelized metaheuristics on 
Spark environment such as whale optimization algorithm (AlJame et al., 2020) and sine cosine 
algorithm (Alfailakawi et al., 2021).

The remainder of this paper is organized as follows: Section 2 provides a brief description of AOA, 
related work, and a short overview of Apache Spark platform. The parallelization and implementation 
of AOA algorithm is described in Section 3. Section 4 discusses experimental results on benchmark 
test functions. The results of the proposed AOA in solving three engineering design problems as 
compared to serial version are given in Section 5. Finally, Section 6 concludes the paper and suggests 
future research directions.

BACKGROUND

AOA Overview
The AOA (Abualigah et al., 2021a) is a population-based metaheuristic optimization algorithm that 
utilizes basic arithmetic operators namely Division (D “÷ ”), Multiplication (M “×”), Addition (A “
+ ”), and Subtraction (S “− ”) to perform the optimization process to eventually reach optimal solution. 
Like other metaheuristic algorithms, the optimization process comprises of two main search phases: 
exploration and exploitation. The exploration phase generates diverse solutions to explore the search 
area while the exploitation phase focuses on searching local regions to reach the target solution.

The optimization process starts with a set of randomly generated candidate solutions to represent 
the initial population X  as shown in Matrix (1):
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Where N  denotes the number of randomly generated solutions in the initial population and n  
indicates the position of the solution.

In each iteration of AOA, the Math Optimizer Accelerated (MOA ) function is computed to 
determine the search phase (i.e., Exploration or Exploitation). The MOA  coefficient is calculated 
using Equation (2):

MOA C Iter Min C Iter
Max Min

M Iter
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Where, MOA C Iter_( )  represents the MOA  function value during the current iteration; C Iter_  
and M Iter_  denote current and maximum number of iterations, respectively; and Max  and Min  
are the maximum and minimum values of the accelerated function, respectively.
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Exploration Phase
The exploration phase of AOA algorithm is carried out by two arithmetic operators Division (D) and 
Multiplication (M) due to their ability to produce highly distributed values. The high dispersion 
characteristic of D and M aids the exploration phase to randomly generate a diverse range of candidate 
solutions to cover the search area. The exploration phase is constrained by the Math Optimizer 
Accelerated function for the case when r MOA1� �> , where r1  is a random number. The position of 
the candidate solution is updated according to Equation (3) where the choice of D or M operators is 
constrained by the condition r2 0 5� � .<  (r2  is a random number):
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Where x C Iter
i j,

_ +( )1  represents the j th position of i th solution in the next iteration; best x
j( )  

is the j th position in the best-obtained solution so far;   is a small integer value; UB
j
 and LB

j
 

represent the upper and lower bound of the j th position, respectively; and µ  is a parameter used to 
control the exploration phase and is set to 0.5 (Abualigah et al., 2021a). The Math Optimizer Probability 
(MOP ) coefficient is calculated using Equation (4): 
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Where MOP C Iter_( )  represents MOP  value at current iteration; C Iter_  and M Iter_  denote 
the current and maximum number of iterations, respectively; and α  is a sensitivity parameter set to 
5 (Abualigah et al., 2021a) and determines the efficiency of the exploitation over the iterations.

Exploitation Phase
The Subtraction (S) and Addition (A) operators are used to guide AOA’s exploitation phase due to 
their low dispersion characteristic. This characteristic of S and A helps the exploitation phase to 
perform a thorough search in local regions of the search area to reach optimal solution with higher 
probability. The exploitation phase is controlled by the MOA  function value for the case when r1  
is not greater than MOA . The position of the candidate solution during the exploitation phase is 
updated according to Equation (5) where the choice of S or A operators is constrained by the condition 
r3 0 5� � .< :
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To sum up, the AOA algorithm begins with a randomly generated set of candidate solutions that 
represents the initial population. As the algorithm iterates, solutions’ positions are updated using D, 
M, S, and A operators with respect to the best-obtained solution so far. The MOA  function value 
controls switching between exploration and exploitation phases to approach the target solution while 
maintaining solution diversity. The pseudo-code of AOA algorithm is given in Algorithm 1.
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Algorithm 1 Pseudo-code for AOA algorithm  

Initialize Arithmetic Optimization Algorithm parameters a, m.  
Initialize the solutions’ positions randomly. (Solutions: i= 1, ..., N.)  
while (C_Iter < M_Iter) do  
  Calculate Fitness Function (FF) for the given solutions  
  Find best solution (Determined best so far). 
  Update MOA and MOP values using Eq. (2) and Eq. (4), respectively. 
  for (i= 1 to Solutions) do  
    for (j= 1 to Positions) do  
      Generate a random values between [0, 1] for (r1, r2, and r3)  
      if r1 > MOA then  
        Exploration phase  
        if r2 > 0.5 then  
          (1) Apply Division operator (D) and update  
          the ith solutions’ positions using Eq.(3).  
        else  
          (2) Apply Multiplication operator (M) and update  
          the ith solutions’ positions using Eq.(3).  
        end if  
      else 
        Exploitation phase  
        if r3 > 0.5 then  
          (1) Apply Subtraction operator (S) and update  
          the ith solutions’ positions using Eq.(5).  
        else  
          (2) Apply Addition operator (A) and update  
          the ith solutions’ positions using Eq.(5).  
        end if  
      end if  
    end for  
  end for  
  C_Iter= C_Iter+1  
end while  
Return the best solution (x). 

LITERATURE REVIEW

AOA is a recent population-based metaheuristic proposed by Abualigah et al. (2021a), which has 
received wider acceptance due to its key advantages such as simplicity, few control parameters, and 
robust search competency. As of January 2023, AOA has been cited more than 915 times according 
to Google Scholar and has been applied successfully in various fields. Applications of AOA include 
thermoelectric power generation systems (Jarray et al., 2022b), damage assessment in functionally 
graded material plate structures (Khatir et al., 2021), optimized neural architecture search for early 
detection of Alzheimer’s disease (Deepa & Chokkalingam, 2022), tuning hyper-parameters of 
bidirectional long short-term memory model for predicting the size of airborne particle bound metals 
(Almalawi et al., 2022), and localization problem in wireless sensor networks (Bhat & KV, 2022) 
to name a few.
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Though the original AOA has shown considerable gains in performance against current 
metaheuristics, it may suffer from slow convergence, getting stuck in local optima, and inadequate 
exploitation. To further enhance AOA performance, researchers have proposed a variety of stochastic 
operators such as opposition-based learning (Abualigah et al., 2022; Yang et al., 2022), and Gaussian 
mutation mechanism and sinusoidal chaotic map (Xu et al., 2021) to address such issues. In another 
enhancement, such as in (Wang et al., 2021) AOA population is divided among multiple groups, 
where each group operates independently and exchanges information among randomly selected groups 
after fixed number of iterations. However, it was not implemented on a parallel computing system.

In addition, AOA performance has been enhanced by hybridizing it with other metaheuristics 
such as Aquila Optimizer (Abbassi et al., 2022; Zhang et al., 2022) to optimize voltaic cell parameters, 
Sine Cosine Algorithm (Abdel-Mawgoud et al., 2022) to determine the size and placement of battery 
energy storage devices, Electric Fish Optimization (Ibrahim et al., 2021) for feature selection problem, 
Salp Swarm Algorithm (Anjum et al., 2022) to optimize sizing and placement of generation units in 
radial distribution networks, Genetic Algorithm (Ewees et al., 2021) for feature selection problem, 
Golden Sine Algorithm (Liu et al., 2022) for solving industrial engineering problems, Differential 
Evolution (Abualigah et al., 2021b) for multilevel thresholding based image segmentation, and Slime 
Mould Algorithm (Zheng et al., 2021) to efficiently solve global optimization problems. Besides, 
several versions of AOA have been proposed by researchers to tackle specific optimization problems 
in different fields such as the binary versions for feature selection problem in machine learning field 
(Bansal et al., 2022; Dahou et al., 2022) and a discretized version to solve structural optimization in 
civil engineering field (Kaveh & Hamedani, 2022). Multi-objective versions of AOA based on non-
dominance sorting have been proposed to solve real-world multi-objective optimization problems 
(Bahmanyar et al., 2022; Li et al., 2022; Premkumar et al., 2021). However, none of the reported 
works have considered the parallelization of AOA on distributed framework such as Apache Spark 
to speed-up computation as well as to further improve its search ability for large scale problems with 
higher dimensionality and complexity, which is the topic of this work.

Apache Spark
Spark is a powerful distributed computing framework built upon the core programming abstraction of 
Resilient Distributed Datasets (RDDs). RDDs represent immutable and fault-tolerant collection of data 
that can be distributed across multiple nodes in a cluster and can be manipulated in parallel. RDD can 
be created by loading a dataset from external storage systems such as Hadoop Distributed File System 
(HDFS) or Amazon S3. It can also be created by parallelizing a local collection in the program using 
SparkContext’s parallelize() method. Spark supports a variety of programming languages, including 
Scala, R, Python, and Java and widely being used for a broad range of applications such as machine 
learning, data mining, and iterative algorithms (Zaharia et al., 2016).

Spark uses a master/slave architecture that consists of a driver node as a master and several worker 
nodes as slaves as shown in Figure 1. The Spark driver is responsible for converting user program into 
tasks and coordinating task scheduling on executors. The executors on worker nodes run the tasks and 
return the results to Spark driver. Additionally, they allocate in-memory storage for RDDs. The cluster 
manager allocates resources and launches executors (Zaharia et al., 2016). In fact, Spark can run on 
different cluster managers such as Hadoop YARN, Apache Mesos, and Spark’s built-in standalone 
cluster manager. RDD has two types of operations: transformations and actions. Transformations are 
operations that produce a new RDD whereas actions compute results based on an RDD and either 
return results to driver program or save it to an external storage system. In essence, transformations 
return RDDs while actions return other data types. Transformations on RDDs are lazy evaluations 
which means that the transformation is not evaluated until the action is applied on the transformation. 
Lazy evaluation of transformations allows Spark to optimize the chain of operations before execution. 
Spark has two types of shared variables, namely, accumulators and broadcast variables. Accumulators 
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combine values from worker nodes back to the driver program whereas broadcast variables enable 
the program to effectively distribute large values to all worker nodes.

THE PARALLELIZATION OF AOA ALGORITHM

The Arithmetic Optimization Algorithm is a population-based optimization algorithm that starts with 
randomly generated candidate solutions which diverge from near-optimal solution during exploration 
phase and converge toward near-optimal solution during exploitation phase over the course of iterations. 
This work proposes Spark-AOA, a Spark-based parallel implementation of AOA aiming to reduce 
execution time and communication overhead. The AOA algorithm’s performance is affected by the 
increased computational complexity of fitness function evaluations that should be computed for each 
solution in the population. To enhance the performance, Spark-AOA splits the solutions population 
into subpopulations that are distributed into multiple partitions on different nodes in the cluster and 
manipulated concurrently. Furthermore, communication overhead is reduced by using broadcast 
variable to distribute best-obtained solution to all nodes. Moreover, the number of broadcasts is 
constrained by a user-defined parameter to further reduce communication overhead.

This section discusses the parallel design and implementation of the proposed Spark-AOA algorithm.

The Parallel Design
Distributed evolutionary algorithms (EAs) can be classified into two main categories based on 
how they divide computing tasks: population-distributed and dimension-distributed models. The 
population-distributed model involves distributing subpopulations among multiple processors or 
nodes, while the dimension-distributed model involves dividing the problem dimensions or subspaces 
among multiple processors or nodes. There are several subtypes of the population-distributed model, 
including master-slave, island, cellular, hierarchical, and pool models. The dimension-distributed 
model can be further divided into coevolution and multi-agent models (Gong et al., 2015).

The parallelization of AOA algorithm is based on the population-distributed model where 
subpopulations are distributed across multiple computing nodes in the cluster. This allows the model 
to be run more efficiently, as it can take advantage of the processing power of multiple devices 

Figure 1. Apache spark architecture
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simultaneously. It can also be useful for handling large populations that may be computationally 
expensive to be processed by a single processor or node. To exchange information between 
subpopulations, the master-slave approach is used. In the master-slave model, the master is responsible 
for performing selection operations and broadcasting the best fitness, but it delegates the task of 
evaluating the fitness of subpopulations to slaves, as this constitutes the majority of the computing 
load. Because the evaluations of fitness in subpopulations are independent of each other, there is 
no need for communication between the slaves. This model is simple because communication only 
occurs between the master and the slaves, with the master sending subpopulations to the slaves and 
the slaves returning the corresponding fitness values to the master.

The parallelization of Spark-AOA optimization phase is illustrated in Figure 2. The population 
RDD is a data set of size N that is divided into P partitions and distributed to different worker nodes. 
Figure 2 shows three worker nodes where each node has four CPU cores and contains four partitions. 
Each subpopulation corresponds to a partition of the population RDD and each partition is assigned 
to one CPU core. All partitions work concurrently for several iterations to find the partition’s best 
solution. The fitness function for each solution in the subpopulation is calculated simultaneously 
in all partitions. Then, the local best fitness in each partition is determined and all solutions in the 
subpopulations update their positions with respect to the local best fitness concurrently. Next, the 
best solution in each partition is obtained and the current best solution is selected as the global best 
fitness after a specific number of iterations.

Spark-AOA Algorithm
The pseudo-code of the proposed Spark-AOA is described in Algorithm 2. The initialization phase 
starts by initializing AOA parameters α  and µ  and sets the best fitness to infinity (line 1). Then, 
population X  is initialized with N  sets of randomly generated candidate solutions, each with n  
solution’s positions that are constrained by upper bound and lower bound values (line 2). Spark 
parallelize() method is called from the driver program on master node to divide the population RDD 
into P partitions that are distributed across different nodes which can operate on the data in parallel. 
Then, Spark persist() method is called to store the subpopulations in memory of each node to reuse 
them in actions if needed hence avoid recomputation and allow faster future actions. In line 3, the 
fitness function is calculated for each solution in a subpopulation in each partition using mapPartitions() 
transformation. This results in an RDD [<F, (x1, x2, …, xn)>] where each record is a key-value pair 
with fitness value F representing the key and solution (x1, x2, …, xn) representing the value. The 
mapPartitions() is a powerful transformation that significantly reduces the amount of shuffling since 

Figure 2. Parallelization of spark-AOA optimization phase
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it operates on one partition at a time rather than on each RDD element. After that, the global best 
solution is determined by applying a map transformation on each partition on different nodes to find 
the best solution while a reduce action is applied to return the global best solution among all partitions 
(line 4). The glom() method is used to create an RDD that combines all elements within each partition 
into a list to reduce data shuffling across partitions. Lastly, the global best solution is broadcasted to 
all nodes in the cluster (line 5) and the solutions’ positions are updated using Eq. (3) or Eq. (5) subject 
to the condition r MOA1� �>  (line 6).

Following the initialization phase, Spark-AOA begins the optimization phase where the fittest 
solution in each subpopulation is identified at each iteration. When the main loop of the optimization 
phase starts, the mapPartitions() transformation calculates the fitness for each solution in the 
subpopulation in each partition (line 8). Next, the inner loop iterates M_Iter/m times so that each 
subpopulation will work on enhancing its own population iteratively (lines 9-20). In each iteration 
of the inner loop, the local best fitness in each partition is identified, then, MOA  and MOP  
coefficients are calculated and random values (r1 , r2 , and r3 ) are generated according to the 
original AOA algorithm (lines 11-13). Subsequently, the solutions’ positions are updated using Eq. 
(3) or Eq. (5) subject to the condition r MOA1� �>  (lines 14-18) concluding one iteration of the inner 
loop. Eventually, all partitions stored in different worker nodes return the solutions as an array using 
the glom() method. The best solution in each partition is selected from the array and the current best 
solution among all partitions is identified (line 21). Following that, the fitness of the solution discovered 
in this iteration is compared to the global best fitness currently available. If a solution’s fitness 
surpasses the current global best, the solution with the lowest fitness among all partitions is broadcasted 
(lines 22-25). The loop counter is then incremented (line 26) and the operation is continued until the 
predetermined number of iterations has been reached (line 27).

SPARK-AOA EVALUATION

This section evaluates the performance of the Spark-AOA as compared to the serial version of the 
algorithm in terms of exeution time and solution quality. Furthermore, Spark-AOA is compared with 
other recently parallelized metaheuristics in Spark environment namely Whale Optimization Algorithm 
(AlJame et al., 2020) with respect to execution time and Sine Cosine Algorithm (Alfailakawi et al., 
2021) with respect to execution time and solution quality.

Algorithm 2 Pseudo-code of the Spark-AOA
 
Input: N = population size, P = number of partitions, n = dimension size,  
Fn = objective function, M_Iter = maximum number of iterations, 
m = inner loop iterations, C_Iter = 1 
Output: best solution (fitness) 
1: initialize AOA parameters a, m. initialize best fitness Fbest 
to infinity 
2: [(x1, x2, …, xn)] ← initialize solutions’ positions randomly 
and parallelize it across P partitions 
3: [<F, (x1, x2, …, xn)>] ← calculate fitness for solutions’ positions
4: <Fbest, (x1, x2, …, xn)> ← find best fitness
5: FagentBC ← broadcast best fitness <Fbest, (x1, x2, …, xn)>
6: [(x1, x2, …, xn)] ← update solutions’ positions with respect 
to Fbest 
7: repeat 
8:  [<F, (x1, x2, …, xn)>] ← calculate fitness for solutions’ positions
9:  repeat  • inner loop in each partition 
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10:    find local best fitness (Flocal) in the partition 
11:    update MOA value using Eq. (2) 
12:    update MOP value using Eq. (4) 
13:    generate random values between [0, 1] (r1, r2, and r3)  
14:    if r1 > MOA then  
15:        Exploration phase use Eq.(3) to update solutions’ 
position in the partition 
16:    else 
17:      Exploitation phase use Eq. (5) to update solutions’ position in  
the partition 
18:    end if 
19:    i = i + 1 
20:  until i > M_Iter/m 
21:  <FbestCurrent, (x1, x2, …, xn)> ← find current best fitness 
among all partitions 
22:  if FbestCurrent < FagentBC.value then 
23:    FagentBC.destroy 
24:    FagentBC ← broadcast best fitness <FbestCurrent, (x1, x2, …, xn)>
25:  end if 
26:  C_Iter = C_Iter + 1 
27: until C_Iter > m 
28: return best fitness

Spark-AOA performance on nine benchmark functions is compared to its serial equivalent as 
well as Spark-SCA while focusing on dimensionality impact on execution time and solution quality. 
All three algorithms were tested using Amazon Elastic MapReduce (EMR), one of AWS’s tools that 
offers a framework for big data processing on top of Amazon Elastic Compute Cloud (EC2). The 
used nodes were EC2 of type m4.xlarge with four vCPU and 16 Mem (GiB). Spark-AOA and Spark-
SCA utilize one master node and three worker nodes while serial AOA has one master node. Equal 
numbers of function evaluations were employed in all implementations to allow for a fair comparison 
of Spark-AOA, serial AOA, and Spark-SCA. Population size for the serial version is set at 32, with 
300 iterations. For Spark-AOA and Spark-SCA, a population size of 96 was used and a maximum 
number of iterations of 100 resulting in a total of 9,600 function evaluations for each implementation. 
Table 1 presents the speedup achieved by Spark-AOA as compared to the serial version as well as 
Spark-SCA. The average values of best fitness, standard deviation (STD), best and worst fitness values 
achieved for all algorithms across 30 separate runs for each dimension size are reported in Table 2.

Table 1 and 2 show the results for three different benchmark dimensions, in particular 50, 250, 
and 1,000. The nine benchmark functions used in these experiments include three unimodal functions, 
namely Sphere (F1), Schwefel 2.21 (F4), and Rosenbrock (F5), three multimodal functions, namely 
Rastrigin (F9), Ackley (F10), and Griewank (F11), and three composite functions, namely CF3 (F16), 
CF4 (F17), and CF5 (F18). Benchmark functions details are described in the appendix. The main 
purpose of this experiment was to investigate algorithm performance with respect to speedup and 
solution quality as a function of problem size. The speedup is computed as the execution time of 
algorithm x  divided by the execution time of Spark-AOA algorithm, where x  is either serial AOA 
or Spark-SCA.

As shown in Table 1, Spark-AOA performed poorly as compared to the serial version and Spark-
SCA for all benchmarks when using dimensions 50 except for F5. With dimension of 250, Spark-AOA 
resulted in a speedup for all multimodal functions and one unimodal function (F5) when compared 
to the serial version. On the other hand, as compared to Spark-SCA, Spark-AOA provided better 
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performance for all benchmarks with dimenison 250 except for F4, F9, and F17. For dimension 1000, 
Spark-AOA is the best performing algorithm as compared to the remaining ones for all benchmarks. 
These results suggest that Spark-AOA is not appropriate when solving small or medium-sized 
problems, in particular problems charaterised by having a single minima such as unimodal functions. 
However, Spark-AOA can achieve significant speedup when addressing higher-dimensional problems.

The results presented in Table 2 indicate that Spark-AOA algorithm performs well on all 
benchmark functions in terms of solution quality regardless of problem dimension. A comparison 
with the serial AOA shows that Spark-AOA obtained the best fitness for all benchmark functions, 
except for F16 with dimension 50. Furthermore, it can be observed that the proposed algorithm 
consistently outperforms the Spark-SCA algorithm in terms of solution quality, except for F5 with 
dimension 1000. In summary, the results suggest that Spark-AOA exhibits superior solution quality 
when compared to both the sequential version and Spark-SCA algorithm.

The second part of the experiment compared the average running time of the proposed 
parallel AOA algorithm to the Spark-based Whale Optimization Algorithm (Spark-WOA). The 
Spark-WOA (AlJame et al., 2020) implementation was tested on an EMR Yarn cluster comprising 
ten Amazon EC2 instances, including one master node and nine worker nodes. These instances 
were of the general purpose m4.large type, each with 2 vCPUs and 8 GiB of memory. The cluster 
had a total of 20 cores. Alternatively, Spark-AOA was tested on the same cluster configuration 
explained earlier with one master node and three worker nodes. The used nodes were EC2 of 
type m4.xlarge with four vCPU and 16 Mem (GiB). Therefore, the total number of cores in the 
cluster is 16 cores. The performance of Spark-AOA was compared to Spark-WOA using five 
different benchmarks (F1, F4, F5, F9, and F10). To ensure a fair comparison, Spark-AOA was 
executed with a population size of 512 and a maximum number of iterations of 70, resulting in a 
same number of function evaluations as Spark-WOA. The benchmark dimension was set to 1,000. 
Additionally, Spark-AOA was run 30 times for each benchmark, and average execution times for 
these runs are reported. Table 3 shows average execution time for Spark-AOA and Spark-WOA. 
It is apparent from the table that Spark-AOA is approximately 40 times faster than Spark-WOA 
on average for all benchmark functions. The significant improvement in Spark-AOA’s speed 
could be attributed to several factors such as reducing communication overhead by limiting the 
number of broadcasts to worker nodes and the nature of the two metaheuristics. Therefore, it 
can be concluded that Spark-AOA algorithm has superior computational performance compared 
to the Spark-WOA algorithm.

ENGINEERING DESIGN PROBLEMS

This section compares Spark-AOA to its serial counterpart on real optimization problems such as 
constrained engineering design problems namely welded beam (Ragsdell & Phillips, 1976), tension/
compression spring (Arora, 2004; Belegundu & Arora, 1985), and pressure vessel (Kannan & Kramer, 
1994; Moss, 2004). The main goal of applying optimization to engineering problems is to reduce the 
values of design parameters and consequently overall design cost.

The objective of the welded beam design problem is to minimize manufacturing cost by obtaining 
the best value of four optimization variables, namely, thickness of weld (h ), length of attached part 
of beam ( l ), beam thickness (b ), and height of the bar ( t ) while using shear stress ( τ ), bending 
stress ( θ ), buckling load (P), and deflection ( δ ) as the constraints. The mathematical representation 
of the welded beam design problem, shown in Figure 3, is described as follows:Consider

�
x x x x x h l t b= 


 =




1 2 3 4

��� ��� ��� ������ ��� 	
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Minimize

f x x x x x x
�( ) = + +( )1 10471 0 04811 14 0

1
2
2 3 4 2

. . . 	
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g x x
1

13 600 0
� �( ) = ( )− ≤� , �τ 	

Table 1. Spark-AOA speedup vs serial-AOA and spark-SCA

Function Dimension
Speedup

Spark-AOA vs Serial-AOA Spark-AOA vs Spark-SCA

F1

50 0.211 0.822

250 0.968 1.098

1,000 2.885 2.325

F4

50 0.219 0.933

250 0.763 0.937

1,000 2.734 2.061

F5

50 0.345 1.008

250 1.302 1.440

1,000 3.033 2.066

F9

50 0.308 0.943

250 1.142 0.884

1,000 3.119 1.641

F10

50 0.341 2.402

250 1.238 1.413

1,000 3.379 1.554

F11

50 0.402 0.882

250 1.598 1.547

1,000 3.714 1.771

F16

50 0.198 0.903

250 0.843 1.201

1,000 2.548 1.852

F17

50 0.166 0.861

250 0.303 0.393

1,000 2.682 1.875

F18

50 0.172 0.952

250 0.784 1.291

1,000 2.619 1.642
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Table 2. Normalized fitness values

F
Spark-SCA Spark-AOA Serial-AOA

Dim 50 250 1,000 50 250 1,000 50 250 1,000

F1

Average 2.13E-04 3.92E-04 9.87E-04 7.61E-210 8.34E-205 0.00E+00 9.45E-03 2.13E-01 1.00E+00

STD 2.85E-02 5.17E-02 1.23E-01 0.00E+00 0.00E+00 0.00E+00 1.76E-01 1.00E+00 3.76E-01

Best 0.00E+00 0.00E+00 0.00E+00 1.07E-230 4.33E-231 1.17E-231 9.61E-04 1.10E-01 1.00E+00

Worst 6.09E-03 1.11E-02 2.64E-02 2.62E-208 2.43E-203 0.00E+00 2.79E-02 2.39E-01 1.00E+00

F4

Average 7.10E-03 1.63E-03 1.83E-02 9.23E-105 0.00E+00 6.86E-104 9.14E-01 9.86E-01 1.00E+00

STD 4.13E-01 6.37E-02 9.43E-01 4.34E-103 0.00E+00 5.79E-102 1.00E+00 7.33E-02 1.82E-02

Best 1.25E-08 3.22E-12 2.26E-08 2.09E-115 4.06E-116 0.00E+00 5.95E-01 9.76E-01 1.00E+00

Worst 1.41E-01 1.88E-02 3.12E-01 1.47E-103 0.00E+00 2.03E-102 9.59E-01 9.91E-01 1.00E+00

F5

Average 1.65E-07 1.69E-03 0.00E+00 3.27E-09 1.67E-08 6.69E-08 2.77E-02 2.24E-01 1.00E+00

STD 2.33E-05 3.82E-01 3.15E-09 0.00E+00 4.66E-11 1.63E-10 3.31E-01 5.19E-01 1.00E+00

Best 3.53E-09 1.79E-08 0.00E+00 3.53E-09 1.79E-08 7.20E-08 9.99E-03 2.05E-01 1.00E+00

Worst 2.13E-06 4.82E-02 0.00E+00 2.77E-09 1.57E-08 6.42E-08 4.01E-02 2.35E-01 1.00E+00

F9

Average 4.97E-03 2.27E-02 2.37E-01 0.00E+00 0.00E+00 0.00E+00 1.44E-02 1.91E-01 1.00E+00

STD 1.86E-02 1.32E-01 1.00E+00 0.00E+00 0.00E+00 0.00E+00 9.26E-03 3.60E-02 1.01E-01

Best 0.00E+00 0.00E+00 4.16E-14 0.00E+00 0.00E+00 0.00E+00 7.41E-03 1.74E-01 1.00E+00

Worst 1.66E-02 1.78E-01 1.00E+00 0.00E+00 0.00E+00 0.00E+00 1.29E-02 1.23E-01 5.68E-01

F10

Average 2.19E-02 1.73E-02 1.33E-02 0.00E+00 0.00E+00 0.00E+00 7.58E-01 9.79E-01 1.00E+00

STD 4.71E-01 2.86E-01 3.71E-01 0.00E+00 0.00E+00 0.00E+00 1.00E+00 8.96E-02 6.94E-02

Best 0.00E+00 4.02E-11 9.73E-10 2.35E-17 2.35E-17 2.35E-17 4.03E-01 9.90E-01 1.00E+00

Worst 3.29E-01 2.14E-01 3.09E-01 0.00E+00 0.00E+00 0.00E+00 9.59E-01 9.97E-01 1.00E+00

F11

Average 9.80E-04 1.56E-03 4.31E-02 0.00E+00 0.00E+00 0.00E+00 7.68E-03 1.80E-01 1.00E+00

STD 2.38E-02 3.80E-02 1.00E+00 0.00E+00 0.00E+00 0.00E+00 3.18E-02 1.39E-01 5.73E-01

Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.21E-05 1.70E-01 1.00E+00

Worst 2.333E-02 3.73E-02 9.83E-01 0.00E+00 0.00E+00 0.00E+00 2.10E-02 1.98E-01 1.00E+00

F16

Average 1.00E+00 6.36E-01 6.12E-01 6.70E-01 0.00E+00 4.87E-01 2.60E-01 8.58E-02 5.37E-01

STD 1.00E+00 6.38E-01 4.42E-01 8.70E-01 0.00E+00 8.94E-01 6.70E-01 6.57E-01 8.13E-01

Best 0.00E+00 3.64E-01 1.00E+00 8.08E-02 0.00E+00 2.02E-02 0.00E+00 0.00E+00 0.00E+00

Worst 1.00E+00 5.36E-01 8.41E-01 3.78E-01 0.00E+00 3.79E-01 3.31E-01 3.49E-01 3.72E-01

F17

Average 1.53E-01 2.24E-01 2.27E-01 1.02E-02 7.43E-02 0.00E+00 1.00E+00 6.79E-01 8.55E-01

STD 1.15E-01 2.07E-01 1.68E-01 2.85E-02 1.12E-01 0.00E+00 9.38E-01 8.21E-01 1.00E+00

Best 3.84E-03 6.14E-01 2.51E-01 0.00E+00 0.00E+00 7.68E-03 1.00E+00 1.50E-01 0.00E+00

Worst 3.49E-02 2.06E-01 1.01E-01 2.33E-03 7.89E-02 0.00E+00 7.47E-01 1.00E+00 8.75E-01

F18

Average 4.79E-01 6.33E-01 5.27E-01 1.07E-01 1.55E-01 0.00E+00 6.86E-01 1.00E+00 4.78E-01

STD 8.54E-01 8.26E-01 6.71E-01 1.55E-01 2.81E-01 0.00E+00 1.00E+00 9.46E-01 5.71E-01

Best 1.36E-01 1.00E+00 9.23E-01 1.44E-02 9.06E-02 5.13E-02 0.00E+00 0.00E+00 4.01E-04

Worst 1.00E+00 6.39E-01 6.19E-01 1.78E-01 3.99E-01 0.00E+00 6.35E-01 5.90E-01 4.56E-01
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Table 3. Spark-AOA and spark-WOA execution time comparison

Benchmark
Execution time (seconds)

Spark-AOA Spark-WOA

F1 1.02 52.10

F4 1.05 51.96

F5 1.58 48.98

F9 1.17 49.35

F10 1.27 48.61

Figure 3. Welded beam design problem
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The intervals for the optimization variables are as follows:

0 10 2 0. , .≤ ≤h b 	
0 10 10 0. , .≤ ≤l t 	

The second design problem is the tension/compression spring design problem that aims to 
minimize the weight of the tension/compression spring to satisfy the design constraints. Three 
design variables need to be considered in this problem namely, mean coil diameter (D), number of 
spring’s active coil (N), and diameter of the wire (d). The tension/compression spring design problem 
schematic is shown in Figure 4 and the mathematical formulation of the design problem is defined 
as follows:Consider

�
x x x x d D N= 
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The intervals for the optimization variables are as follows:

0 05 2 0. .≤ ≤d 	
0 25 1 3. .≤ ≤D 	
2 0 15 0. .≤ ≤N 	

The pressure vessel design problem schematic is shown in Figure 5. The pressure vessel consists 
of a cylindrical part that is capped with hemispherical heads at both ends. Four design parameters need 
to be optimized to minimize the total cost, namely thickness of pressure vessel (Ts), head thickness 
(Th), length of the cylindrical part excluding the heads (L), and the inner radius (R). The mathematical 
representation of pressure vessel design problem is described as follows:Consider

�
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Figure 4. Tension/compression spring design problem
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The proposed algorithm (Spark-AOA) and its serial version were applied for solving the welded 
beam, tension/compression spring, and pressure vessel design problems and their performance in 
term of execution time, speedup, and overall cost were compared. The results are given in Tables 4, 
5, and 6. All tables include maximum number of iterations and population size (number of agents). 
The number of function evaluations and cluster settings were the same for both algorithms, similar 
to what was done in the previous section. The reported results in this section are the average of 30 
independent runs. For all three engineering design problems, the proposed Spark-AOA algorithm 
outperforms the serial version in terms of execution time. In addition, the proposed algorithm offers 
at least a two-fold speedup over the serial version when the population size exceeds 8000. Evidently, 
the speedup grows as population size increases in most cases. In terms of cost, Spark-AOA performs 
relatively poorly compared to the serial version in most cases. Both implementations resulted in a 
comparable cost for the tension/compression spring design problem. As for the welded beam design 
problem, Spark-AOA gives a higher cost for four out of five cases with an average increase of 5% as 
compared to the serial version. Furthermore, Spark-AOA resulted in a higher cost for the pressure 
vessel design problem as compared to the serial version. Although the cost is typically higher, Spark-
AOA is more efficient in terms of run-time, providing at least two times the speedup over the serial 
implementation.

Figure 5. Pressure vessel design problem
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CONCLUSION

Nature-inspired population-based metaheuristics including the recently proposed AOA are state-of-
the-art computational intelligence paradigms for exploring efficiently the search space of complex 
optimization problems. This article developed and implemented a distributed version of AOA called 
Spark-AOA on Apache Spark environment in order to accelerate the optimization process. To our 
knowledge, AOA has previously not been implemented on the Spark platform. Spark-AOA harnessed 
the in-memory parallel computing capabilities of Spark and the intrinsic parallelism in population-
based metaheuristics to reduce computational time. Spark-AOA divided the population into several 
subpopulations and each subpopulation evolved concurrently on a different node in the cluster. The 

Table 4. Welded beam design problem results

Algorithm
# of evaluations Optimization variables

Cost Time 
(sec) Speedup

Max. iter. Agents h l t b

AOA 250 500 0.204 4.344 9.491 0.238 2.133 0.606
1.603

Spark-AOA 200 625 0.177 5.865 9.217 0.235 2.241 0.378

AOA 500 2,000 0.179 5.546 9.674 0.218 2.127 3.907
3.108

Spark-AOA 125 8,000 0.189 5.684 9.024 0.243 2.272 1.257

AOA 600 4,000 0.184 5.332 9.752 0.209 2.080 8.748
3.22

Spark-AOA 100 24,000 0.198 4.983 8.963 0.242 2.167 2.717

AOA 300 10,000 0.186 4.859 9.743 0.216 2.058 10.745
2.976

Spark-AOA 50 60,000 0.197 4.591 8.927 0.234 2.044 3.611

AOA 120 75,000 0.179 4.590 9.564 0.212 1.964 29.357
3.023

Spark-AOA 100 90,000 0.203 4.426 8.978 0.235 2.049 9.712

Table 5. Tension/compression spring design problem results

Algorithm
# of evaluations Optimization variables

Cost Time 
(sec) Speedup

Max. iter. Agents d D N

AOA 250 500 0.061 0.673 9.526 0.019 0.434
1.219

Spark-AOA 200 625 0.055 0.462 12.627 0.018 0.356

AOA 500 2,000 0.056 0.518 11.726 0.017 2.796
2.461

Spark-AOA 125 8,000 0.053 0.387 13.259 0.016 1.136

AOA 600 4,000 0.055 0.456 12.173 0.015 6.463
2.608

Spark-AOA 100 24,000 0.055 0.447 10.522 0.015 2.478

AOA 300 10,000 0.052 0.374 13.233 0.014 8.085
2.586

Spark-AOA 50 60,000 0.055 0.428 10.368 0.015 3.126

AOA 120 75,000 0.054 0.399 11.353 0.014 24.628
2.927

Spark-AOA 100 90,000 0.054 0.413 10.53 0.014 8.414
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communication between subpopulations was carried out by using a broadcast variable to distribute 
best-obtained solution to all nodes at specific iteration intervals. To evaluate the performance of 
Spark-AOA, various simulation experiments were conducted on different benchmarks and engineering 
design problems on Amazon Web Services (AWS) public cloud. The important conclusions of this 
article can be summarized as follows:

•	 Spark-AOA improved the speedup and solution quality to solve large scale optimization problems 
due to the exploitation of population level parallelism as compared with standard AOA.

•	 Experimental results revealed that the high-dimensional optimization problems requiring a large 
number of time-consuming fitness evaluations per iteration benefit most from parallelization. On 
the contrary, low-dimensional problems requiring a small number of short fitness evaluations 
per iteration showed limited scalability.

•	 Spark-AOA demonstrated higher speedup and better solution quality as compared with Spark-
based implementations of recent metaheuristics such as Whale Optimization Algorithm and 
Sine Cosine Algorithm.

A possible limitation of the proposed approach is that it did not exploit the parallelism at the 
dimension level of the optimization problem to further enhance the speedup. In addition, computation 
to communication cost trade-off among subpopulations needs further investigation. Based on these 
observations of the study, the authors plan to pursue the following research directions in order to 
improve the versatility and robustness of our approach.

•	 Study the effects of more complex inter-subpopulations communication and exploitation of 
parallelism at the dimension level for each individual of subpopulation to harness benefits of 
Spark-AOA on compute-intensive real-life optimization problems.

•	 Investigate the parallelization of hybrid versions of AOA including multi-objective AOA in 
Spark environment.

•	 Explore opportunities of parallelizing AOA with GPU to enhance its competitive effectiveness 
and efficiency with respect to the solution quality and the execution time.

Table 6. Pressure vessel design problem results

Algorithm
# of evaluations Optimization variables

Cost Time 
(sec) Speedup

Max. iter. Agents T
s

T
h

R L

AOA 250 500 1.100 0.688 49.362 137.591 8419.168 0.447
1.211

Spark-AOA 200 625 1.128 0.844 47.001 164.798 10146.855 0.369

AOA 500 2,000 1.015 0.620 46.949 150.831 7727.2456 2.934
2.359

Spark-AOA 125 8,000 1.048 0.622 48.254 145.303 8558.302 1.244

AOA 600 4,000 0.938 0.594 46.954 148.626 7141.491 6.798
2.552

Spark-AOA 100 24,000 1.041 0.663 48.166 140.632 8507.578 2.664

AOA 300 10,000 0.911 0.574 44.284 166.026 7079.079 8.648
2.501

Spark-AOA 50 60,000 1.001 0.619 47.985 137.092 7864.746 3.458

AOA 120 75,000 0.883 0.541 43.311 173.038 6892.649 26.115
2.734

Spark-AOA 100 90,000 0.989 0.594 47.414 140.684 7630.083 9.552
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APPENDIX

Table 7 mathematically describes all the benchmark functions used in this paper while Figure 6 
illustrates the graphical plot of those functions.

Table 7. Benchmark function details
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Figure 6. Benchmark functions plots
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